Dynamic fracture model for acoustic emission

  • M. Minozzi
  • G. Caldarelli
  • L. Pietronero
  • S. ZapperiEmail author


We study the acoustic emission produced by micro-cracks using a two-dimensional disordered lattice model of dynamic fracture, which allows to relate the acoustic response to the internal damage of the sample. We find that the distributions of acoustic energy bursts decays as a power law in agreement with experimental observations. The scaling exponents measured in the present dynamic model can related to those obtained in the quasi-static random fuse model.


Experimental Observation Acoustic Emission Lattice Model Fracture Model Dynamic Fracture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Sethna, K.A. Dahmen, C.R. Myers, Nature 410, 242 (2001)CrossRefGoogle Scholar
  2. 2.
    S. Field, J. Witt, F. Nori, X. Ling, Phys. Rev. Lett. 74, 1206 (1995)CrossRefGoogle Scholar
  3. 3.
    G. Durin, S. Zapperi, Phys. Rev. Lett. 84, 4705 (2000)CrossRefGoogle Scholar
  4. 4.
    M.C. Miguel, A. Vespignani, S. Zapperi, J. Weiss, J.R. Grasso, Nature 410, 667 (2001)CrossRefGoogle Scholar
  5. 5.
    A. Garcimartín, A. Guarino, L. Bellon, S. Ciliberto, Phys. Rev. Lett. 79, 3202 (1997)CrossRefGoogle Scholar
  6. 6.
    C. Maes, A. Van Moffaert, H. Frederix, H. Strauven, Phys. Rev. B 57, 4987 (1998)CrossRefGoogle Scholar
  7. 7.
    A. Petri, G. Paparo, A. Vespignani, A. Alippi, M. Costantini, Phys. Rev. Lett. 73, 3423 (1994)CrossRefGoogle Scholar
  8. 8.
    L.I. Salminen, A.I. Tolvanen, M.J. Alava, Phys. Rev. Lett. 89, 185503 (2002)CrossRefGoogle Scholar
  9. 9.
    Statistical Models for the Fracture of Disordered Media, edited by H.J. Herrmann, S. Roux (North Holland, Amsterdam, 1990)Google Scholar
  10. 10.
    L. de Arcangelis, S. Redner, H.J. Herrmann, J. Phys. Lett. Paris 46, L585 (1985)Google Scholar
  11. 11.
    P.M. Duxbury, P.D. Beale, P.L. Leath, Phys. Rev. Lett. 57, 1052 (1986)CrossRefGoogle Scholar
  12. 12.
    A. Hansen, P.C. Hemmer, Phys. Lett. A 184, 394 (1994)CrossRefGoogle Scholar
  13. 13.
    S. Zapperi, P. Ray, H.E. Stanley, A. Vespignani, Phys. Rev. Lett. 78, 1408 (1997)CrossRefGoogle Scholar
  14. 14.
    S. Zapperi, A. Vespignani, H.E. Stanley, Nature (London) 388, 658 (1997)CrossRefGoogle Scholar
  15. 15.
    G. Caldarelli, F.D. Di Tolla, A. Petri, Phys. Rev. Lett. 77, 2503 (1996)CrossRefGoogle Scholar
  16. 16.
    V.I. Räisänen, M.J. Alava, R.M. Nieminen, Phys. Rev. B 58, 14288 (1998)CrossRefGoogle Scholar
  17. 17.
    See J. Fineberg, M. Marder, Phys. Rep. 313, 1 (1999), for a review on dynamic fractureCrossRefGoogle Scholar
  18. 18.
    M. Marder, X. Liu, Phys. Rev. Lett. 71, 2417 (1993)CrossRefGoogle Scholar
  19. 19.
    T.T. Rautiainen, M.J. Alava, K. Kaski, Phys. Rev. E 51, R2727 (1994)Google Scholar
  20. 20.
    T. Martín, P. Español, M.A. Rubio, I. Zúñiga, Phys. Rev. E 61, 6120 (2000)CrossRefGoogle Scholar
  21. 21.
    R. Ahluwalia, G. Ananthakrishna, Phys. Rev. Lett. 86, 4076 (2001)CrossRefGoogle Scholar
  22. 22.
    Y. Huang , H. Saleur , C. Sammis, D. Sornette, Europhys. Lett. 41, 43 (1998)Google Scholar
  23. 23.
    P.C. Hemmer, A. Hansen, J. Appl. Mech. 59, 909 (1992)zbMATHGoogle Scholar
  24. 24.
    H.A. Daniels, Proc. Roy. Soc. London A 183, 405 (1945)MathSciNetzbMATHGoogle Scholar
  25. 25.
    In quasistatic models, the damage displays a singular derivative when plotted against stress. This could also be found in our model if we invert the stress-strain curve. The peak in the curve translates into a singular derivative in the inverse curveGoogle Scholar
  26. 26.
    The distribution of the “elastic” energy released in each avalanche was recently measured in the quasi-static FBM and found to decay as power law with exponent \(\beta\simeq 1.8\) [8], in agreement with our resultsGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • M. Minozzi
    • 1
    • 2
    • 3
  • G. Caldarelli
    • 2
  • L. Pietronero
    • 3
    • 4
  • S. Zapperi
    • 4
    Email author
  1. 1.Dipartimento di Fisica,Universitá di Roma 3,Roma,Italy
  2. 2.INFM UdR Roma 1, Dipartimento di Fisica,Universitá “La Sapienza”,Roma,Italy
  3. 3.CNR Istituto di Acustica “O. M. Corbino”,Roma,Italy
  4. 4.INFM UdR Roma 1 and SMC, Dipartimento di Fisica,Universitá “La Sapienza”, Roma,Italy

Personalised recommendations