Advertisement

Large-amplitude behavior of the Grinfeld instability: a variational approach

  • P. KohlertEmail author
  • K. Kassner
  • C. Misbah
Article

Abstract.

In previous work, we have performed amplitude expansions of the continuum equations for the Grinfeld instability and carried them to high orders. Nevertheless, the approach turned out to be restricted to relatively small amplitudes. In this article, we use a variational approach in terms of multi-cycloid curves instead. Besides its higher precision at given order, the method has the advantages of giving a transparent physical meaning to the appearance of cusp singularities and of not being restricted to interfaces representable as single-valued functions. Using a single cycloid as ansatz function, the entire calculation can be performed analytically, which gives a good qualitative overview of the system. Taking into account several but few cycloid modes, we obtain remarkably good quantitative agreement with previous numerical calculations. With a few more modes taken into consideration, we improve on the accuracy of those calculations. Our approach extends them to situations involving gravity effects. Results on the shape of steady-state solutions are presented at both large stresses and amplitudes. In addition, their stability is investigated.

Keywords

Numerical Calculation High Precision Physical Meaning Continuum Equation Small Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Grinfeld, Dokl. Akad. Nauk SSSR 290, 1358 (1986) [Sov. Phys. Dokl. 31, 831 (1986)]Google Scholar
  2. 2.
    M.A. Grinfeld, J. Nonlinear Sci. 3, 35 (1993)MathSciNetzbMATHGoogle Scholar
  3. 3.
    M. Grinfeld, Phys. Rev. B 49, 8310 (1994)CrossRefGoogle Scholar
  4. 4.
    P. Berger, P. Kohlert, K. Kassner, C. Misbah, Phys. Rev. Lett. 90, 176103 (2003)CrossRefGoogle Scholar
  5. 5.
    R.J. Asaro, W.A. Tiller, Metall. Trans. A 3, 1789 (1972)Google Scholar
  6. 6.
    R.H. Torii, S. Balibar, J. Low Temp. Phys. 89, 391 (1992)Google Scholar
  7. 7.
    I. Cantat, K. Kassner, C. Misbah, H. Müller-Krumbhaar, Phys. Rev. E 58, 6027 (1998).CrossRefGoogle Scholar
  8. 8.
    W.H. Yang, D.J. Srolovitz, Phys. Rev. Lett. 71, 1593 (1993)CrossRefGoogle Scholar
  9. 9.
    K. Kassner, C Misbah, Europhys. Lett. 28, 245 (1994)Google Scholar
  10. 10.
    B.J. Spencer, D.I. Meiron, Acta Metall. Mater. 42, 3629 (1994)CrossRefGoogle Scholar
  11. 11.
    J. Kappey, Directional solidification under stress, Ph.D. thesis, Otto-von-Guericke University, Magdeburg, 2000Google Scholar
  12. 12.
    J. Müller, Study of Stress-Induced Morphological Instabilities, Ph.D. thesis, McGill University, Montréal, 1998Google Scholar
  13. 13.
    J. Müller, M. Grant, Phys. Rev. Lett. 82, 1736 (1999)CrossRefGoogle Scholar
  14. 14.
    K. Kassner, C. Misbah, J. Müller, J. Kappey, P. Kohlert, Phys. Rev. E 63, 036117 (2001)CrossRefGoogle Scholar
  15. 15.
    C.-H. Chiu, H. Gao, Inter. J. Solids Structures 30, 2983 (1993)CrossRefzbMATHGoogle Scholar
  16. 16.
    N.I. Mußchelischwili, Einige Grundaufgaben zur mathematischen Elastizitätstheorie. Fachbuchverlag, Leipzig, 1971Google Scholar
  17. 17.
    P. Kohlert, K. Kassner, C. Misbah, High-order weakly nonlinear analysis of the Grinfeld instability, 2003, in preparation, see cond-mat/0207642Google Scholar
  18. 18.
    H.H. Yu, Z. Suo, Acta Mater. 47, 77 (1999)CrossRefGoogle Scholar
  19. 19.
    P. Noziéres, J. Phys. I France 3, 681 (1993)CrossRefGoogle Scholar
  20. 20.
    H.-J. Bartsch, Mathematische Formeln, 15th edn. (Buch-und Zeit-Verlagsgesellschaft mbH, Köln, 1988)Google Scholar
  21. 21.
    I. Durand, K. Kassner, C. Misbah, H. Müller-Krumbhaar, Phys. Rev. Lett. 76, 3013 (1996)CrossRefGoogle Scholar
  22. 22.
    Pocketbook of Mathematical Functions, edited by M. Abramowitz, I.A. Stegun (Harri Deutsch, Thun, Frankfurt/Main, 1984). Abridged Edition of Handbook of Mathematical FunctionsGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  2. 2.Groupe de Recherche sur les Phénoménes hors de l’Équilibre, LSPUniversité Joseph Fourier (CNRS)Grenoble I, Saint-Martin d’Héres, CedexFrance

Personalised recommendations