Advertisement

On \(\mathsf{c = 1}\) critical phases in anisotropic spin-1 chains

  • C. Degli Esposti Boschi
  • E. Ercolessi
  • F. Ortolani
  • M. RoncagliaEmail author
Article

Abstract.

Quantum spin-1 chains may develop massless phases in presence of Ising-like and single-ion anisotropies. We have studied c = 1 critical phases by means of both analytical techniques, including a mapping of the lattice Hamiltonian onto an O(2) NL\(\sigma\)M, and a multi-target DMRG algorithm which allows for accurate calculation of excited states. We find excellent quantitative agreement with the theoretical predictions and conclude that a pure Gaussian model, without any orbifold construction, describes correctly the low-energy physics of these critical phases. This combined analysis indicates that the multicritical point at large single-ion anisotropy does not belong to the same universality class as the Takhtajan-Babujian Hamiltonian as claimed in the past. A link between string-order correlation functions and twisting vertex operators, along the c = 1 line that ends at this point, is also suggested.

Keywords

Vertex Operator Gaussian Model Accurate Calculation Quantitative Agreement Universality Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983)CrossRefMathSciNetGoogle Scholar
  2. 2.
    S.R. White, D.H. Huse, Phys. Rev. B 48, 3844 (1993)CrossRefGoogle Scholar
  3. 3.
    J. Darriet, L.P. Regnault, Solid State Commun. 86, 409 (1993)CrossRefGoogle Scholar
  4. 4.
    E. Ercolessi, G. Morandi, M. Roncaglia, Eur. Phys. J. B 32, 489 (2003)Google Scholar
  5. 5.
    V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge, Cambridge University Press, 1993)Google Scholar
  6. 6.
    R. Botet, R. Jullien, Phys. Rev. B 27, 613 (1983)CrossRefGoogle Scholar
  7. 7.
    H.J. Schulz, Phys. Rev. B 34, 6372 (1986)CrossRefGoogle Scholar
  8. 8.
    T. Kennedy, H. Tasaki, Commun. Math. Phys. 147, 431 (1992)MathSciNetzbMATHGoogle Scholar
  9. 9.
    W. Chen, K. Hida, B.C. Sanctuary, Phys. Rev. B 67, 104401 (2003)CrossRefGoogle Scholar
  10. 10.
    M. den Nijs, K. Rommelse, Phys. Rev. B 40, 4709 (1989)CrossRefGoogle Scholar
  11. 11.
    A. Auerbach, Interacting Electrons and Quantum Magnetism (New York etc., Springer-Verlag, 1994)Google Scholar
  12. 12.
    See for example: A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge, Cambridge University Press, 1998)Google Scholar
  13. 13.
    P. Ginsparg in Fields, Strings and Critical Phenomena: Les Houches 1988, Session XLIX, edited by E. Brézin, J. Zinn-Justin (Amsterdam etc., North-Holland, 1990), and Nucl. Phys. B 295 [FS21], 153 (1988)Google Scholar
  14. 14.
    S.R. White, Phys. Rev. Lett. 69, 2863 (1992)CrossRefGoogle Scholar
  15. 15.
    K. Wu, H. Simon, SIAM J. Matrix Anal. Appl. 22, 602 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    C. Degli Esposti Boschi, F. Ortolani, Investigation of Quantum Phase Transitions using Multi-target DMRG Methods, in preparationGoogle Scholar
  17. 17.
    C.J. Hamer, M.N. Barber, J. Phys. A: Math. Gen. 14, 241 (1981)CrossRefMathSciNetGoogle Scholar
  18. 18.
    H.W.J. Blöte, J.L. Cardy, M.P. Nightingale, Phys. Rev. Lett. 56, 742 (1986)CrossRefGoogle Scholar
  19. 19.
    P. Di Francesco, P. Mathieu, D. Senechal, Conformal Field Theory (New York etc., Springer, 1997)Google Scholar
  20. 20.
    M. Baake, G. von Gehlen, V. Rittenberg, J. Phys. A 20, L479, L487 (1987)Google Scholar
  21. 21.
    L.A. Takhtajan, Phys. Lett. A 87, 479 (1982)Google Scholar
  22. 22.
    A.M. Tsvelik, Phys. Rev. B 42, 10499 (1990)CrossRefGoogle Scholar
  23. 23.
    W. Chen, K. Hida, B.C. Sanctuary, J. Phys. Soc. Jpn 69, 237 (2000)Google Scholar
  24. 24.
    A. Kitazawa, J. Phys. A: Math. Gen. 30, L285 (1997)Google Scholar
  25. 25.
    R. Jullien, P. Pfeuty, J. Phys. A: Math. Gen. 14, 3111 (1981)CrossRefGoogle Scholar
  26. 26.
    M. Kohmoto, M. den Nijs, L.P. Kadanoff, Phys. Rev. B 24, 5229 (1981)CrossRefGoogle Scholar
  27. 27.
    L.P. Kadanoff, A.C. Brown, Ann. Phys. 121, 318 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • C. Degli Esposti Boschi
    • 1
  • E. Ercolessi
    • 1
    • 2
  • F. Ortolani
    • 1
    • 2
  • M. Roncaglia
    • 1
    • 2
    Email author
  1. 1.INFM Research Unit of BolognaBolognaItaly
  2. 2.Physics DepartmentUniversity of Bologna, and INFNBolognaItaly

Personalised recommendations