Advertisement

Electron velocity in superlattices

  • U. MercEmail author
  • C. Pacher
  • M. Topic
  • F. Smole
  • E. Gornik
Article

Abstract.

Calculations of the electron velocity in superlattices based on the miniband dispersion relation, and the velocity defined through the tunneling time are discussed. The former definition is based on the intrinsically infinite modified Kronig-Penney model, while the latter rests upon the transfer matrix method and takes the finiteness of the superlattice into account. The main result is that the velocities differ: for weakly coupled structures where the tunneling time can be defined through the linewidth, the transfer matrix method predicts a smaller velocity than the modified Kronig-Penney model.

Keywords

Dispersion Relation Transfer Matrix Matrix Method Electron Velocity Transfer Matrix Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.L. Chang, L. Esaki, R. Tsu, Appl. Phys. Lett. 24, 593 (1974)Google Scholar
  2. 2.
    A. Wacker, Phys. Rep. 357, 1-111 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    R. de L. Kronig, W. Penney, Proc. R. Soc. London, Ser. A 130, 499 (1931)zbMATHGoogle Scholar
  4. 4.
    G. Bastard, Phys. Rev. B 24, 5693 (1981)CrossRefGoogle Scholar
  5. 5.
    P.J. Price, Superlattices and Microstructures, 2, 593 (1986)Google Scholar
  6. 6.
    C. Pacher, Appl. Phys. Lett. 79, 1486 (2001)CrossRefGoogle Scholar
  7. 7.
    H. Yamamoto, Y. Kanie, K. Taniguchi, Phys. Status Solidi (b) 154, 195 (1989)Google Scholar
  8. 8.
    P. Pereyra, Phys. Rev. B 65, 205120 (2002)CrossRefGoogle Scholar
  9. 9.
    N. Harada, S. Kuroda, Jpn J. Appl. Phys. 25, L871 (1986)Google Scholar
  10. 10.
    E.H. Hauge, J.A. Stovneng, Rev. Mod. Phys. 61, 917 (1989)CrossRefGoogle Scholar
  11. 11.
    C.R. Leavens, G.C. Aers, Phys. Rev. B 39, 1202 (1989)CrossRefGoogle Scholar
  12. 12.
    R.S. Dumont, T.L. Marchioro II, Phys. Rev. A 47, 85 (1993), note the vanishing interference term for R = 0 in their equation (14)CrossRefGoogle Scholar
  13. 13.
    W. Jaworski, D.M. Wardlaw, Phys. Rev. B 40, 6512 (1989)Google Scholar
  14. 14.
    C. Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc., New York, 1987)Google Scholar
  15. 15.
    C. Pacher, E. Gornik (unpublished)Google Scholar
  16. 16.
    D.F. Nelson, R.C. Miller, D.A. Kleinmann, Phys. Rev. B 35, 7770 (1987)CrossRefGoogle Scholar
  17. 17.
    P. England, J.R. Hayes, E. Colas, M. Helm, Phys. Rev. Lett. 63, 1708 (1989)CrossRefGoogle Scholar
  18. 18.
    C. Rauch, G. Strasser, K. Unterrainer, W. Boxleitner, A. Wacker, E. Gornik, Phys. Rev. Lett. 81, 3495 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • U. Merc
    • 1
    Email author
  • C. Pacher
    • 2
  • M. Topic
    • 1
  • F. Smole
    • 1
  • E. Gornik
    • 2
  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Institut für FestkörperelektronikTechnische Universität WienWienAustria

Personalised recommendations