Advertisement

Anisotropic effects in surface acoustic wave propagation from a point source in a crystal

  • A. A. MaznevEmail author
  • A. M. Lomonosov
  • P. Hess
  • Al A. Kolomenskii
OriginalPaper

Abstract.

Strong anisotropic effects in the propagation of surface acoustic waves (SAWs) from a point-like source are studied experimentally and theoretically. Nanosecond SAW pulses are generated by focused laser pulses and detected with a cw probe laser beam at a large distance from the source compared to the SAW wavelength, which allows us to resolve fine intricate features in SAW wavefronts. In our theoretical model, we represent the laser excitation by a localized impulsive force acting on the sample surface and calculate the far-field surface response of an elastically anisotropic solid to such a force. The model simulates the measured SAW waveforms very well and accounts for all experimentally observed features. Using the data obtained for the (111) and (001) surfaces of GaAs, we describe a variety of effects encountered in the SAW propagation from a point source in crystals. The most interesting phenomenon is the existence of cuspidal structures in SAW wavefronts resulting in multiple SAW arrivals for certain ranges of the observation angle. Cuspidal edges correspond to the “phonon focusing” directions yielding sharp peaks in the SAW amplitude. A finite SAW wavelength results in “internal diffraction” whereby the SAW wavefront spreads beyond the group velocity cusps. Degeneration of a SAW into a transverse bulk wave is another strong effect influencing the anisotropy of the SAW amplitude and making whole sections of the SAW wavefront including some phonon focusing directions unobservable in the experiment. The propagation of a leaky SAW mode (pseudo-SAW) is affected by a specific additional effect i.e. anisotropic attenuation. We also demonstrate that many of the discussed features are reproduced in “powder patterns”, a simple technique developed by us earlier for visualization of SAW amplitude anisotropy.

Keywords

GaAs Surface Acoustic Wave Anisotropic Effect Bulk Wave Impulsive Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.A. Auld, Acoustic Fields and Waves in solids (Wiley, N.Y., 1973)Google Scholar
  2. 2.
    T.L. Szabo, A.J. Slobodnik, Jr., IEEE Trans. Sonics Ultrason. SU-20, 240 (1973)Google Scholar
  3. 3.
    J.P. Wolfe, Imaging Phonons (Cambridge University Press, Cambridge, 1998)Google Scholar
  4. 4.
    B. Taylor, H.J. Maris, C. Elbaum, Phys. Rev. Lett. 23, 416 (1969)CrossRefGoogle Scholar
  5. 5.
    G.A. Northrop, J.P. Wolfe, in Nonequilibrium Phonon Dynamics, edited by W.E. Bron (Plenum, NY, 1985)Google Scholar
  6. 6.
    A.G. Every, W. Sachse, K.Y. Kim, M.O. Thompson, Phys. Rev. Lett. 65, 1446 (1990)CrossRefGoogle Scholar
  7. 7.
    K.Y. Kim, K.C. Bretz, A.G. Every, W. Sachse, J. Appl. Phys. 79, 1857 (1996)CrossRefGoogle Scholar
  8. 8.
    M.R. Hauser, R.L. Weaver, J.P. Wolfe, Phys. Rev. Lett. 68, 2604 (1992)CrossRefGoogle Scholar
  9. 9.
    K.Y. Kim, W. Sachse, A.G. Every, J. Acoust. Soc. Am. 93, 1393 (1993)Google Scholar
  10. 10.
    K.-U. Wurz, J. Wesner, K. Hillmann, W. Grill, Z. Phys. B 97, 487 (1995)Google Scholar
  11. 11.
    V.T. Buchwald, Q.J. Mech. Appl. Math. 14, 293 (1961)zbMATHGoogle Scholar
  12. 12.
    S. Tamura, K. Honjo, Jap. J. Appl. Phys. 20, Suppl. 20-3, 17 (1981)Google Scholar
  13. 13.
    R.E. Camley, A.A. Maradudin, Phys. Rev. B27, 1959 (1983)Google Scholar
  14. 14.
    Al.A. Kolomenskii, A.A. Maznev, JETP Lett. 53, 423 (1991)Google Scholar
  15. 15.
    Al.A. Kolomenskii, A.A. Maznev, Phys. Rev. B48, 14502 (1993)Google Scholar
  16. 16.
    A.A. Maznev, A.G. Every, Solid State Commun. 97, 679 (1996)Google Scholar
  17. 17.
    A.A. Maznev, Al.A. Kolomenskii, P. Hess, Phys. Rev. Lett. 75, 3332 (1995)CrossRefGoogle Scholar
  18. 18.
    T.-T. Wu, J.-F. Chai, Ultrasonics 32, 21 (1994)CrossRefGoogle Scholar
  19. 19.
    R.E. Vines, S. Tamura, J.P. Wolfe, Phys. Rev. Lett. 74, 2729 (1995)CrossRefGoogle Scholar
  20. 20.
    Y. Sugawara, O.B. Wright, O. Matsuda, M. Takigahira, Y. Tanaka, S. Tamura, V.E. Gusev, Phys. Rev. Lett. 88, 185504 (2002)CrossRefGoogle Scholar
  21. 21.
    A detailed discussion of laser excitation and detection of linear and nonlinear SAW pulses can be found in A.M. Lomonosov, P. Hess, A.P. Mayer, in Modern Acoustical Techniques for the Measurement of Mechanical Properties, edited by M. Levy, H.E. Bass, R. Stern (Academic Press, San Diego, 2001), pp. 65-134Google Scholar
  22. 22.
    A. Lomonosov, P. Hess, Phys. Rev. Lett. 83, 3876 (1999)CrossRefGoogle Scholar
  23. 23.
    G.W. Farnell, in Physical Acoustics, edited by W.P. Mason, R.N. Thurston, Vol. 6 (Academic Press, NY, 1970)Google Scholar
  24. 24.
    H.J. Maris, J. Acoust. Soc. Am. 50, 812 (1971)Google Scholar
  25. 25.
    C.Y. Wang, J.D. Achenbach, Wave Motion 24, 227 (1996)MathSciNetzbMATHGoogle Scholar
  26. 26.
    A.G. Every, K.Y. Kim, A.A. Maznev, J. Acoust. Soc. Am. 102, 1346 (1997)CrossRefGoogle Scholar
  27. 27.
    A.G. Every, A.A. Maznev, G.A.D. Briggs, Phys. Rev. Lett. 79, 2478 (1997)CrossRefGoogle Scholar
  28. 28.
    Y. Tanaka, M. Takigahiro, S. Tamura, Phys. Rev. B 66, 075409 (2002)Google Scholar
  29. 29.
    S. Tamura, M. Yagi, Phys. Rev. B49, 17378 (1994)Google Scholar
  30. 30.
    A.A. Maznev, A.G. Every, Int. J. Engng. Sci. 35, 321 (1997)zbMATHGoogle Scholar
  31. 31.
    H. Coufal, K. Meyer, R.K. Grygier, P. Hess, A. Neubrand, J. Acoust. Soc. Am. 95, 1158 (1994)Google Scholar
  32. 32.
    Landolt-Börnstein, New Series, Group III, Vol. 29, edited by D.F. Nelson (Springer, Berlin, 1992)Google Scholar
  33. 33.
    Akusticheskie Krystally (Acoustic Crystals), Handbook, edited by M.P. Shaskol’skaya (Nauka, Moscow, 1982)Google Scholar
  34. 34.
    Depending on elastic anisotropy, pseudo-SAW wavefront on (001) cubic crystal surface may also contain cusps, see A.A. Maznev, A.G. Every, Acta Acustica 1, 137 (1994)Google Scholar
  35. 35.
    G.I. Stegeman, J. Appl. Phys. 47, 1712 (1976)CrossRefGoogle Scholar
  36. 36.
    Al.A. Kolomenskii, A.A. Maznev, J. Appl. Phys. 77, 6052 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • A. A. Maznev
    • 1
    Email author
  • A. M. Lomonosov
    • 2
  • P. Hess
    • 2
  • Al A. Kolomenskii
    • 3
  1. 1.Philips Advanced Metrology SystemsNatickUSA
  2. 2.Institut of Physical ChemistryUniversity of HeidelbergHeidelbergGermany
  3. 3.Department of PhysicsTexas A&M UniversityUSA

Personalised recommendations