A column of grains in the jamming limit: glassy dynamics in the compaction process

  • J. M. LuckEmail author
  • A. Mehta


We investigate a stochastic model describing a column of grains in the jamming limit, in the presence of a low vibrational intensity. The key control parameter of the model, \(\epsilon\), is a representation of granular shape, related to the reduced void space. Regularity and irregularity in grain shapes, respectively corresponding to rational and irrational values of \(\epsilon\), are shown to be centrally important in determining the statics and dynamics of the compaction process.


Compaction Control Parameter Stochastic Model Void Space Grain Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.F. Edwards, in Granular Matter: An Interdisciplinary Approach, edited by A. Mehta (Springer, New York, 1994)Google Scholar
  2. 2.
    P.G. de Gennes, Rev. Mod. Phys. 71, S374 (1999)Google Scholar
  3. 3.
    M.F. Shlesinger, J.T. Bendler, in Phase Transitions in Soft Condensed Matter, edited by T. Riste and D. Sherrington, (Plenum, 1989)Google Scholar
  4. 4.
    M. Mézard, G. Parisi, M.A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987)Google Scholar
  5. 5.
    P.F. Stadler, J.M. Luck, A. Mehta, Europhys. Lett. 57, 46 (2002)Google Scholar
  6. 6.
    P.F. Stadler, A. Mehta, J.M. Luck, Adv. Complex Systems 4, 429 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    A. Mehta, J.M. Luck, J. Phys. A 36, L365 (2003)Google Scholar
  8. 8.
    J.D. Bernal, Proc. R. Soc. London A 280, 299 (1964)Google Scholar
  9. 9.
    E.R. Nowak, J.B. Knight, M. Povinelli, H.M. Jaeger, S.R. Nagel, Powder Technology 94, 79 (1997)Google Scholar
  10. 10.
    A. Mehta, G.C. Barker, Phys. Rev. Lett. 67, 394 (1991)Google Scholar
  11. 11.
    R.L. Brown, J.C. Richards, Principles of Powder Mechanics (Pergamon, Oxford, 1970)Google Scholar
  12. 12.
    N.G. de Bruijn, Nederl. Akad. Wetens. Proc. A 84, 27 (1981)Google Scholar
  13. 13.
    G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers (Clarendon, Oxford, 1990)Google Scholar
  14. 14.
    A.J. Bray, Adv. Phys. 43, 357 (1994)Google Scholar
  15. 15.
    R. Cordery, S. Sarker, J. Tobochnik, Phys. Rev. B 24, 5402 (1981)CrossRefGoogle Scholar
  16. 16.
    W. Kob, talk at Unifying concepts in granular media and glasses (Anacapri, Capri, Italy, June 25-28, 2003), and private communicationGoogle Scholar
  17. 17.
    E.R. Weeks, D.A. Weitz, Chem. Phys. 284, 361 (2002)CrossRefGoogle Scholar
  18. 18.
    R. Monasson, O. Pouliquen, Physica A 236, 395 (1997)CrossRefGoogle Scholar
  19. 19.
    S.F. Edwards, D.V. Grinev, Phys. Rev. E 58, 4758 (1999)CrossRefGoogle Scholar
  20. 20.
    E. Clément, A. Lindner, private communicationGoogle Scholar
  21. 21.
    J.M. Luck, C. Godréche, A. Janner, T. Janssen, J. Phys. A 26, 1951 (1993)MathSciNetzbMATHGoogle Scholar
  22. 22.
    F. Vallet, R. Schilling, S. Aubry, Europhys. Lett. 2, 815 (1986)Google Scholar
  23. 23.
    J. Berg, A. Mehta, Europhys. Lett. 56, 784 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Service de Physique Théorique (URA 2306 of CNRS)CEA SaclayGif-sur-Yvette CedexFrance
  2. 2.S.N. Bose National Centre for Basic SciencesSalt Lake, CalcuttaIndia

Personalised recommendations