Advertisement

Electron spin resonance studies on quantum tunneling in spinel ferrite nanoparticles

  • C. T. Hsieh
  • J. T. LueEmail author
OriginalPaper

Abstract.

The electron spin resonance (ESR) spectrometer, a very sensitive instrument with fast detecting window to explore quantum phase transitions for magnetic nanoparticles, was exploited to study the fascinating interplay between thermal and quantum fluctuations in the vicinity of a quantum critical point. We have measured ESR in ferrofluid samples containing nanosize particles of Fe2O3. The evolution of the ESR spectrum with temperature suggests that quantum tunneling of spins occurs in single domain magnetic particles in the low temperature regime. The effects of various microwave fields, particle sizes, and temperatures on the magnetic states of single domain spinel ferrite nanoparticles are investigated. We can consistently explain experimental data assuming that, as the temperature decreases, the spectrum changes from superparamagnetic (SPR) to blocked SPR and finally evolves quantum superparamagnetic behaviour as the temperature lowers down further. A nanoparticle system of a highly anisotropic magnetic material can be qualitatively specified by a simple quantum spin model, or by the Heisenberg model with strong easy-plane anisotropy.

Keywords

Electron Spin Resonance Electron Spin Resonance Spectrum Single Domain Quantum Phase Transition Heisenberg Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Hertz, Phys. Rev. B 14, 1165 (1976)CrossRefGoogle Scholar
  2. 2.
    S.A. Carter, T.F. Rosenbaum, J.M. Honig, J. Spalek, Phys. Rev. Lett. 67, 3440 (1991)CrossRefGoogle Scholar
  3. 3.
    H.V. Lohneysen, T. Pietrus, G. Portisch, H.G. Schlager, A. Schroder, M. Sieck, T. Trappmann, Phys. Rev. Lett. 72, 3262 (1994)CrossRefGoogle Scholar
  4. 4.
    M.B. Maple, C.L. Seaman, D.A. Gajewski, Y. Dalichaouch, V.B. Barbetta, M.C. de Andrade, H.A. Mook, H.G. Lukefahr, O.O. Berna, D.E. MacLaughlin, J. Low. Temp. Phys. 99, 223 (1995)Google Scholar
  5. 5.
    S. Chakravarty, B.I. Halperin, D.R. Nelson, Phys. Rev. B 39, 2344 (1989)CrossRefGoogle Scholar
  6. 6.
    S. Sachdev, J.Ye, Phys. Rev. Lett. 69, 2411 (1992)CrossRefGoogle Scholar
  7. 7.
    B. Keimer, R.J. Birgeneau, A. Cassanho, Y. Endoh, R.W. Erwin, M.A. Kastner, G. Shirane, Phys. Rev. Lett. 67, 1930 (1991)CrossRefGoogle Scholar
  8. 8.
    L.Y. Chen, J.T. Lue, R.S. Liu, Phys. Rev. B 52, 12883 (1995)CrossRefGoogle Scholar
  9. 9.
    J. Miller, D.A. Huse, Phys. Rev. Lett. 70, 3147 (1993)Google Scholar
  10. 10.
    J.T. Lue, W.C. Huang, S.K. Ma, Phys. Rev. B 51, 14570 (1995)Google Scholar
  11. 11.
    W.C. Huang, J.T. Lue, Phys. Rev. B 59, 69 (1999)Google Scholar
  12. 12.
    R.H. Kodama, A.E. Berkowitz, E.J. McNiff, Jr. S. Foner, Phys. Rev. Lett. 77, 394 (1996)CrossRefGoogle Scholar
  13. 13.
    B. Martinez, X. Obradors, Ll. Balcells, A. Rouanet, C. Monty, Phys. Rev. Lett. 80, 181 (1998)CrossRefGoogle Scholar
  14. 14.
    E.M. Chudnovsky, J. Tejada, Macroscopic Quantum Tunneling of the Magnetic Moment (Cambridge, 1998), p. 94Google Scholar
  15. 15.
    C. Paulsen, L.C. Sampaio, R. Tachoueres, B. Barbara, D. Fruchart, A. Marchand, J.L. Tholence, M. Uehara, J. Magn. Magn. Mater. 116, 67 (1992)Google Scholar
  16. 16.
    X.X. Zhang, J.M. Hernandez, J. Tejada, R.F. Ziolo Phys. Rev. B 54, 4101 (1996)Google Scholar
  17. 17.
    J. Tejada, L. Balcells, S. Linderoth, R. Perzynski, B. Barbara, J.C. Bacri, J. Appl. Phys. 73, 6952 (1993)CrossRefGoogle Scholar
  18. 18.
    R.H. Kodama, C.L. Seaman, A.E. Berkowitz, M.B. Maple, J. Appl. Phys. 75, 5639 (1994)Google Scholar
  19. 19.
    V. Yu. Irkhin, A.A. Katanin, Phys. Rev. B 58, 5509 (1998)CrossRefGoogle Scholar
  20. 20.
    A. Garvin, C.L. Chien, J. Appl. Phys. 67, 938 (1990)CrossRefGoogle Scholar
  21. 21.
    G. Xiao, S.H. Liou, A. Levy, J.N. Taylor, C.L. Chien, Phys. Rev. B 34, 7573 (1986)CrossRefGoogle Scholar
  22. 22.
    S. Sachdev, Quantum Phase Transitions (Cambridge, 1999), p. 8Google Scholar
  23. 23.
    H.J. Williams, R.M. Bozorth, W. Shockley, Phys. Rev. 75, 155 (1949)CrossRefGoogle Scholar
  24. 24.
    L. Néel, Ann. Geophys. 5, 99 (1949)Google Scholar
  25. 25.
    C. Johansson, M. Hanson, P.V. Hendriksen, S. Morup, J. Magn. Magn. Mater. 122, 125 (1993)Google Scholar
  26. 26.
    D.P.E. Dickson, N.M.K. Reid, C. Hunt, H.D. Williams, M. El-Hilo, K. O’Grady, J. Magn. Magn. Mater. 125, 345 (1993)CrossRefGoogle Scholar
  27. 27.
    V.K. Sharma, A. Baiker, J. Chem. Phys. 75, 5596 (1981)CrossRefGoogle Scholar
  28. 28.
    R.S. de Biasi, T.C. Devezas, J. Appl. Phys. 49, 2466 (1978)CrossRefGoogle Scholar
  29. 29.
    R. Berger, J. Kliava, J.C. Bissey, V. Baietto, J. Appl. Phys. 87, 7389 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Department of PhysicsNational Tsing Hua UniversityHsin Chu 300Taiwan

Personalised recommendations