Advertisement

New insight on spin polarized current injection in high-T\(\mathsf{_c}\) cuprate/manganite devices

  • J. Dumont
  • M. Moragués
  • B. LeridonEmail author
  • J. Lesueur
  • J. P. Contour
OriginalPaper

Abstract.

Recently, numerous experiments have been reported on critical current reductions in thin films cuprates as being due to spin injection from ferromagnetic manganites. However, little theoretical justification for these very strong effects exists, and the necessary spin relaxation length is always larger than predictions. In the present work, we investigate the possibility that these effects are due to a different origin and we report on devices designed such that the temperature of the layer itself can be measured in situ. Our data show that similar reductions of the critical current are quantitatively correlated to heating in the manganite electrode due to dissipation of the polarization current.

Keywords

Thin Film Numerous Experiment Manganite Critical Current Similar Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Prinz, Phys. Today 48, 58 (1995)Google Scholar
  2. 2.
    V.A. Vas’ko , Phys. Rev. Lett. 78, 1134 (1997)CrossRefGoogle Scholar
  3. 3.
    Z.W. Dong , Appl. Phys. Lett. 71, 1718 (1997)CrossRefGoogle Scholar
  4. 4.
    N.-C. Yeh , Phys. Rev. B 60, 10522 (1999)CrossRefGoogle Scholar
  5. 5.
    P. Raychaudhuri, S. Sarkar, P.K. Mal, A.R. Bhangale, R. Pinto, J. Phys. Condens. Matter 12, 9933 (2000)CrossRefGoogle Scholar
  6. 6.
    V. Plausinaitiene , Physica C 351, 13 (2001)CrossRefGoogle Scholar
  7. 7.
    S. Takahashi, H. Imamura, S. Maekawa, Phys. Rev. Lett. 82, 3911 (1999)CrossRefGoogle Scholar
  8. 8.
    S. Bhattacharjee, M. Sardar, Phys. Rev. B 62, R6139 (2000)Google Scholar
  9. 9.
    Q. Si, Phys. Rev. Lett. 78, 1767 (1997)CrossRefGoogle Scholar
  10. 10.
    K. Lee , Appl. Phys. Lett. 75, 1149 (1999)CrossRefGoogle Scholar
  11. 11.
    D. Koller , J. Appl. Phys. 83, 6774 (1998)CrossRefGoogle Scholar
  12. 12.
    P. Mikheenko, M.S. Colclough, C. Severac, R. Chakalov, F. Welhoffer, Appl. Phys. Lett. 78, 356 (2001)CrossRefGoogle Scholar
  13. 13.
    Y. Gim,, A.W. Kleinsasser, J.B. Barner, J. Appl. Phys. 90, 4063 (2001)CrossRefGoogle Scholar
  14. 14.
    R. Lyonnet, J.L. Maurice, M.J. Hÿtch, D. Michel, J.P. Contour, Appl. Surf. Science 162-163, 245 (2000)Google Scholar
  15. 15.
    A. Fert, H. Jaffres, Phys. Rev. B 64, 184420 (2001)CrossRefGoogle Scholar
  16. 16.
    M. Viret , Europhys. Lett. 39, 545 (1997)Google Scholar
  17. 17.
    J.M.d. Teresa , Phys. Rev. Lett. 82, 4288 (1999)CrossRefGoogle Scholar
  18. 18.
    J.-H. Park , Phys. Rev. Lett. 81, 1953 (1998)CrossRefGoogle Scholar
  19. 19.
    C.D. Chen, W. Kuo, D.S. Chung, Phys. Rev. Lett. 88, 047004 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • J. Dumont
    • 1
  • M. Moragués
    • 1
  • B. Leridon
    • 1
    Email author
  • J. Lesueur
    • 1
  • J. P. Contour
    • 2
  1. 1.Laboratoire de Physique QuantiqueÉcole Supérieure de Physique et Chimie IndustriellesParis Cedex 05France
  2. 2.Unité Mixte de Physique CNRS/ThalesDomaine de CorbevilleOrsay CedexFrance

Personalised recommendations