Crystallographic and magnetic structure of ZnV\(\mathsf{_2}\)O\(\mathsf{_4}\)

Structural phase transition due to spin-driven Jahn-Teller distortions
  • M. Reehuis
  • A. KrimmelEmail author
  • N. Büttgen
  • A. Loidl
  • A. Prokofiev


We report on the crystallographic and magnetic structure of the geometrically frustrated spinel ZnV2O4 as determined by neutron powder diffraction. At T = 51 K, a cubic-to-tetragonal phase transition takes place. The low temperature crystallographic structure is characterized by the space group I41/amd and unit cell dimensions \({a/\sqrt{2} \times a/\sqrt{2} \times a}\) with a being the lattice constant of the cubic phase. The corresponding antiferromagnetic structure of the vanadium sublattice can be described by a propagation vector \({{\bf k} = (001)}\) with the magnetic moments being aligned parallel to the c-axis. The ordered magnetic moment is 0.65(5) \({\mu_B}\) per V3+ ion. The experimental results are in accord with recent theoretical models proposing spin-driven Jahn-Teller distortions. The results are also compared with reports on non-ordering ZnV2O4.


Phase Transition Vanadium Theoretical Model Lattice Constant Powder Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review, see for example: R. Moessner, Can. J. Phys. 79, 1283 (2001)CrossRefGoogle Scholar
  2. 2.
    B. Canals, C. Lacroix, Phys. Rev. B 61, 1149 (2000)CrossRefGoogle Scholar
  3. 3.
    A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry, Nature 399, 333 (1999)CrossRefGoogle Scholar
  4. 4.
    S.T. Bramwell, M.J.P. Gingras, Science 294, 1495 (2001)CrossRefGoogle Scholar
  5. 5.
    S. Nizio, Phys. Stat. Sol. A 18, K11 (1973)Google Scholar
  6. 6.
    Y. Ueda, N. Fujiwara, H. Yasuoka, J. Phys. Soc. Jpn 66, 778 (1997)Google Scholar
  7. 7.
    D.B. Rogers, R.J. Arnott, A. Wold, J.B. Goodenough, J. Phys. Chem. Solids 24, 347 (1963)Google Scholar
  8. 8.
    S. Kondo, C. Urano, Y. Kurihara, M. Nohara, H. Takagi, J. Phys. Soc. Jpn 69, Suppl. B 139 (2000)Google Scholar
  9. 9.
    H. Mamiya, M. Onoda, Sol. State Comm. 95, 217 (1995)CrossRefGoogle Scholar
  10. 10.
    H. Mamiya, M. Onoda, F. Furubayashi, J. Tang, I. Nakatani, J. Appl. Phys. 81, 5289 (1997)CrossRefGoogle Scholar
  11. 11.
    N. Nishiguchi, M. Onoda, J. Phys.: Condens. Matter 14, L551 (2001)Google Scholar
  12. 12.
    M. Onoda, J. Hasegawa, J. Phys.: Condens. Matter 15, L95 (2003)Google Scholar
  13. 13.
    J. Villain, Z. Phys. B 33, 31 (1979)Google Scholar
  14. 14.
    Y. Yamashita, K. Ueda, Phys. Rev. Lett. 85, 4960 (2000)CrossRefGoogle Scholar
  15. 15.
    J. Rodriguez-Carvajal, Physica B 192, 55 (1993)Google Scholar
  16. 16.
    V.F. Sears, in: International Tables of Crystallography, edited by A.J.C. Wilson, Vol. C (Kluwer, Dordrecht, 1992), p. 383Google Scholar
  17. 17.
    P.J. Brown, in: International Tables of Crystallography, edited by A.J.C. Wilson, Vol. C (Kluwer, Dordrecht, 1992), p. 391Google Scholar
  18. 18.
    E.F Bertaut, J. Phys. France Colloq., Suppl. 2-3, C1-462 (1972)Google Scholar
  19. 19.
    O. Tchernyshyov, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 88, 067203 (2002)CrossRefGoogle Scholar
  20. 20.
    O. Tchernyshyov, R. Moessner, S.L. Sondhi, Phys. Rev. B 66, 064403 (2002)CrossRefGoogle Scholar
  21. 21.
    N. Büttgen, A. Krimmel, A. Loidl, M. Klemm, S. Horn, D.R. Noakes, E. Schreier, G.M. Kalvius, Physica B 312-313, 703 (2002)Google Scholar
  22. 22.
    R. Valenti, private communicationGoogle Scholar
  23. 23.
    G.M. Kalvius, D.R. Noakes, R. Wäppling, N. Büttgen, A. Krimmel, M. Klemm, S. Horn, A. Loidl, Physica B 326, 470 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • M. Reehuis
    • 1
  • A. Krimmel
    • 1
    Email author
  • N. Büttgen
    • 1
  • A. Loidl
    • 1
  • A. Prokofiev
    • 2
  1. 1.Experimentalphysik V, Elektronische Korrelationen und Magnetismus, Institut für PhysikUniversität AugsburgAugsburgGermany
  2. 2.Physikalisches InstitutJohann Wolfgang Goethe-UniversitätFrankfurtGermany

Personalised recommendations