Classical basis for quantum spectral fluctuations in hyperbolic systems

  • S. MüllerEmail author
Original Paper


We reason in support of the universality of quantum spectral fluctuations in chaotic systems, starting from the pioneering work of Sieber and Richter who expressed the spectral form factor in terms of pairs of periodic orbits with self-crossings and avoided crossings. Dropping the restriction to uniformly hyperbolic dynamics, we show that for general hyperbolic two-freedom systems with time-reversal invariance the spectral form factor is faithful to random-matrix theory, up to quadratic order in time. We re late the action difference within the contributing pairs of orbits to properties of stable and unstable manifolds. In studying the effects of conjugate points, we show that almost self-retracing orbit loops do not contribute to the form factor. Our findings are substantiated by numerical evidence for the concrete example of two billiard systems.


Manifold Form Factor Periodic Orbit Chaotic System Hyperbolic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Bohigas, M.J. Giannoni, C. Schmit, Phys. Rev. Lett. 52, 1 (1984)CrossRefMathSciNetGoogle Scholar
  2. 2.
    F. Haake, Quantum Signatures of Chaos, 2nd edn. (Springer, Berlin, 2000)Google Scholar
  3. 3.
    H.-J. Stöckmann, Quantum Chaos: an introduction (Cambridge University Press, Cambridge 1999)Google Scholar
  4. 4.
    K. Richter, M. Sieber, Phys. Rev. Lett. 89, 206801 (2002) and references thereinGoogle Scholar
  5. 5.
    O. Agam, B.L. Altshuler, A.V. Andreev, Phys. Rev. Lett. 75, 4389 (1995)MathSciNetzbMATHGoogle Scholar
  6. 6.
    R.S. Whitney, I.V. Lerner, R.A. Smith, Waves Random Media 9, 179 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    M.V. Berry, Proc. R. Soc. Lond. A 400, 299 (1985)Google Scholar
  8. 8.
    N. Argaman, F. Dittes, E. Doron, J. Keating, A. Kitaev, M. Sieber, U. Smilansky, Phys. Rev. Lett. 71, 4326 (1993)MathSciNetzbMATHGoogle Scholar
  9. 9.
    M. Sieber, K. Richter, Physica Scripta T 90, 128 (2001)Google Scholar
  10. 10.
    M.C. Gutzwiller, J. Math. Phys. 12, 343 (1971)Google Scholar
  11. 11.
    U. Smilansky, B. Verdene, J. Phys. A 36, 3525 (2003)Google Scholar
  12. 12.
    G. Berkolaiko, H. Schanz, R.S. Whitney, Phys. Rev. Lett. 88, 104101 (2002)Google Scholar
  13. 13.
    G. Berkolaiko, H. Schanz, R.S. Whitney, J. Phys. A 36, 8373 (2003)Google Scholar
  14. 14.
    S. Müller, Diplomarbeit, Universität Essen (2001)Google Scholar
  15. 15.
    S. Müller, talk given at Complex Quantum Systems seminar, Regensburg (2002)Google Scholar
  16. 16.
    P.A. Braun, F. Haake, S. Heusler, J. Phys. A 35, 1381 (2002)MathSciNetzbMATHGoogle Scholar
  17. 17.
    D. Spehner, J. Phys. A 36, 7269 (2003)Google Scholar
  18. 18.
    M. Turek, K. Richter, J. Phys. A 36, L455 (2003)Google Scholar
  19. 19.
    P.A. Braun, S. Heusler, S. Müller, F. Haake, Eur. Phys. J. B 30, 189 (2003)Google Scholar
  20. 20.
    P. Gaspard, Chaos, scattering, and statistical mechanics (Cambridge University Press, 1998)Google Scholar
  21. 21.
    N. Chernov, R. Markarian, Introduction to the Ergodic Theory of Chaotic Billiards (IMCA, Lima, 2001) Google Scholar
  22. 22.
    S.C. Creagh, J.M. Robbins, R.G. Littlejohn, Phys. Rev. A 42, 1907 (1990)MathSciNetGoogle Scholar
  23. 23.
    J.A. Foxman, J.M. Robbins, J. Phys. A 30, 8187 (1997)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Ya.B. Pesin, Math. USSR Izvestija 10, 1261 (1976)zbMATHGoogle Scholar
  25. 25.
    R. Artuso, J. Tech. Phys. 37, 273 (1996)Google Scholar
  26. 26.
    L.A. Santaló, Integral Geometry and Geometric Probability (Addison Wesley, Reading, Mass 1978)Google Scholar
  27. 27.
    M. Robnik, J. Phys. A 17, 1049 (1984)MathSciNetzbMATHGoogle Scholar
  28. 28.
    A. Bäcker, F. Steiner, P. Stifter, Phys. Rev. E 52, 2463 (1995)Google Scholar
  29. 29.
    H. Bruus, N.D. Whelan, Nonlinearity 9, 1023 (1996)MathSciNetzbMATHGoogle Scholar
  30. 30.
    A. Bäcker, H.R. Dullin, J. Phys. A 30, 1991 (1997)Google Scholar
  31. 31.
    A. Bäcker, N. Chernov, Nonlinearity 11, 79 (1998)Google Scholar
  32. 32.
    A. Bäcker, Dissertation, Universität Ulm (1998)Google Scholar
  33. 33.
    J.H. Hannay, A.M. Ozorio de Almeida, J. Phys. A 17, 3429 (1984)MathSciNetGoogle Scholar
  34. 34.
    Ya.G. Sinai, Russ. Math. Surv. 25, 137 (1970)zbMATHGoogle Scholar
  35. 35.
    H. Primack, H. Schanz, U. Smilansky, I. Ussishkin, Phys. Rev. Lett. 76, 1615 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Fachbereich PhysikUniversität Duisburg-EssenEssenGermany

Personalised recommendations