Advertisement

Statistical approach of the modulational instability of the discrete self-trapping equation

  • A. VisinescuEmail author
  • D. Grecu
Original Paper

Abstract.

The discrete self-trapping equation (DST) represents an useful model for several properties of one-dimensional nonlinear molecular crystals. The modulational instability of DST equation is discussed from a statistical point of view, considering the oscillator amplitude as a random variable. A kinetic equation for the two-point correlation function is written down, and its linear stability is studied. Both a Gaussian and a Lorentzian form for the initial unperturbed wave spectrum are discussed. Comparison with the continuum limit (NLS equation) is carried out.

Keywords

Correlation Function Statistical Point Kinetic Equation Statistical Approach Linear Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Eilbeck, P.S. Lomdahl, A.C. Scott, Physica D 16, 318 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Davydov's Soliton Revisited. Self Trapping of Vibrational Energy in Proteins, edited by P.L. Christiansen, A.C. Scott, NATO ASI Series B 243 (Plenum Press, New York, 1990)Google Scholar
  3. 3.
    A.S. Davydov, N.I. Kislukha, Phys. Stat. Sol. (b) 59, 465 (1973)Google Scholar
  4. 4.
    A.S. Davydov, Solitons in Molecular Systems (Reidel, Dordrecht, 1985)Google Scholar
  5. 5.
    L. Cruzeiro-Hansson, H. Feddersen, R. Flesch, P.L. Christiansen, M. Salerno, A.C. Scott, Phys. Rev. B 42, 522 (1990)CrossRefGoogle Scholar
  6. 6.
    T.B. Benjamin, J.E. Feir, J. Fluid Mech. 27, 417 (1967)zbMATHGoogle Scholar
  7. 7.
    R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris, Solitons and Nonlinear Wave Equations (Acad. Press, 1982)Google Scholar
  8. 8.
    V.I. Karpman, E.M. Krushkal, Sov. Phys. JETP 25, 1102 (1969)Google Scholar
  9. 9.
    C. Lange, A.C. Newell, SIAM J. Appl. Math. 27, 441 (1974)zbMATHGoogle Scholar
  10. 10.
    Nonlinear Wave Motion, edited by A.C. Newell (Am. Math. Soc., Providence, 1974)Google Scholar
  11. 11.
    Y.S. Kivshar, M. Salerno, Phys. Rev. E 49, 3543 (1994)CrossRefGoogle Scholar
  12. 12.
    P. Marquié, J.M. Bilbault, M. Remoissenet, Phys. Rev. E 49, 828 (1994)CrossRefGoogle Scholar
  13. 13.
    V.E. Zakharov, S.L. Musher, A.M. Rubenchik, Phys. Rep. 129, 285 (1985)CrossRefMathSciNetGoogle Scholar
  14. 14.
    J.T. Stuart, B.C. DiPrima, Proc. Roy. Soc. London A 362, 27 (1978)Google Scholar
  15. 15.
    N.N. Akhmediev, V.I. Korneev, Teor. Mat. Phys. 69, 1089 (1986)zbMATHGoogle Scholar
  16. 16.
    D. Grecu, A. Visinescu, Ann. University of Craiova: Physics AUC 12, 129 (2002)Google Scholar
  17. 17.
    I.E. Alber, Proc. Roy. Soc. London A 363, 525 (1978)MathSciNetzbMATHGoogle Scholar
  18. 18.
    M. Onorato, A. Osborne, M. Serio, R. Fedele, nlin.CD/0202026Google Scholar
  19. 19.
    C.M. Gardiner Handbook of Stochastic Methods (Springer Verlag, Berlin, 1983)Google Scholar
  20. 20.
    E. Wigner, Phys. Rev. 40, 749 (1932) J.E. Moyal, Proc. Cambridge Phyl. Soc. 45, 99 (1949)zbMATHGoogle Scholar
  21. 21.
    A. Erdelyi, Asymptotic Expansions (Dover Publ. 1956)Google Scholar
  22. 22.
    L.D. Landau, J. Phys. USSR 10, 25 (1946)zbMATHGoogle Scholar
  23. 23.
    M.J. Ablowitz, H. Segur Solitons and the Inverse Scattering Transform, see appendix (SIAM, Philadelphia, 1981)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsNational Institute for Physics and Nuclear Engineering "Horia Hulubei"BucharestRomania

Personalised recommendations