Advertisement

Dimer as a challenge to the second law

  • V. Cápek
Original Paper

Abstract.

A simple system consisting of an asymmetric dimer cooperating with two baths is presented as a challenge to the second law of thermodynamics. This requires specific coupling of the dimer to the baths and a specific thermodynamic regime.

Keywords

Simple System Specific Coupling Asymmetric Dimer Thermodynamic Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.P. Sheehan, Phys. Plasmas 2, 1893 (1995)CrossRefGoogle Scholar
  2. 2.
    A.V. Nikulov, I.N. Zhilyaev, J. Low Temp. Phys. 112, 227 (1998)CrossRefGoogle Scholar
  3. 3.
    S.V. Dubonos, V.I. Kuznetsov, A.V. Nikulov, http://arxiv.org/abs/physics/0105059Google Scholar
  4. 4.
    V. Cápek, Czech. J. Phys. 47, 845 (1997)CrossRefGoogle Scholar
  5. 5.
    V. Cápek, Phys. Rev. E 57, 3846 (1998)CrossRefGoogle Scholar
  6. 6.
    V. Cápek, J. Bok, Physica A 290, 379 (2001)Google Scholar
  7. 7.
    A.V. Nikulov, Phys. Rev. B 64, 012505 (2001)CrossRefGoogle Scholar
  8. 8.
    V. Cápek, Europ. Phys. J. B 25, 101 (2002). See also http://arxiv.org/abs/cond-mat/0012056CrossRefGoogle Scholar
  9. 9.
    V. Cápek, T. Mancal, J. Phys. A 35, 2111 (2002)Google Scholar
  10. 10.
    V. Cápek, D.P. Sheehan, Physica A 304, 461 (2002)Google Scholar
  11. 11.
    D.P. Sheehan, J. Sci. Explor. 12, 303 (1998)Google Scholar
  12. 12.
    D.P. Sheehan, Phys. Lett. A 280, 185 (2001)CrossRefGoogle Scholar
  13. 13.
    A.E. Allahverdyan, T.M. Nieuwenhuizen, Phys. Rev. E 66, 036102 (2002)CrossRefGoogle Scholar
  14. 14.
    E.B. Davies, Math. Ann. 219, 147 (1976)zbMATHGoogle Scholar
  15. 15.
    V. Cápek, I. Barvík, Physica A 294, 388 (2001)Google Scholar
  16. 16.
    P.N. Argyres, P.L. Kelley, Phys. Rev. A 134, 98 (1964)zbMATHGoogle Scholar
  17. 17.
    E.B. Davies, Quantum Theory of Open Systems (Academic Press, London - New York - San Francisco, 1976)Google Scholar
  18. 18.
    A.G. Redfield, IBM J. Res. Develop. 1, 19 (1957)Google Scholar
  19. 19.
    A.G. Redfield, in Advances in Magnetic Resonance, Vol. 1, edited by J.S. Waugh (Academic Press, New York - London, 1965), p. 1Google Scholar
  20. 20.
    G. Mahler, V.A. Weberuss, Quantum Networks. Dynamics of Open Nanostructures (Springer, Berlin - Heidelberg - New York, Tokyo 1995)Google Scholar
  21. 21.
    P. Reineker, in Exciton Dynamics in Molecular Crystals and Aggregates, Springer Tracts in Modern Physics 94, edited by G. Höhler (Springer, Berlin - Heidelberg - New York, 1982), p. 111Google Scholar
  22. 22.
    T. Novotný, Europhys. Lett. 59, 648 (2002)Google Scholar
  23. 23.
    A. Fulinski, Phys. Lett. A 25, 13 (1967)CrossRefGoogle Scholar
  24. 24.
    A. Fulinski, W.J. Kramarczyk, Physica 39, 575 (1968)CrossRefzbMATHGoogle Scholar
  25. 25.
    H. Gzyl, J. Stat. Phys. 26, 679 (1981)Google Scholar
  26. 26.
    N. Hashitsume, F. Shibata, M. Shingu, J. Stat. Phys. 17, 155 (1977)Google Scholar
  27. 27.
    F. Shibata, Y. Takahashi, N. Hashitsume, J. Stat. Phys. 17, 171 (1977)Google Scholar
  28. 28.
    R. Dümcke, H. Spohn, Z. Physik B 34, 419 (1979)Google Scholar
  29. 29.
    F. Sanda, http://xxx.lanl.gov/abs/physics/0201040Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • V. Cápek
    • 1
  1. 1.Faculty of Mathematics and PhysicsInstitute of Physics of Charles UniversityPrague 2Czech Republic

Personalised recommendations