Limit current density in 2D metallic granular packings

  • S. DorboloEmail author
  • M. Ausloos
  • N. Vandewalle
Original Paper


The electrical properties of a 2D packed metallic pentagons have been studied. The electrical characterization of such metallic pentagon heaps, like i-V measurements, has been achieved. Two distinct regimes have been shown. They are separated by a transition line along which the system exhibits a memory effect behavior due to the irreversible improvement of electrical contacts between pentagons (hot spots). A limit current density has been found.


Electrical Property Memory Effect Electrical Contact Transition Line Electrical Characterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Calzecchi-Onesti, Il Nuovo Cimento 16, 58 (1884)Google Scholar
  2. 2.
    E. Branly, C.R. Acad. Sci. Paris 111, 785 (1890)Google Scholar
  3. 3.
    D. Vandembroucq, A.C. Boccara, S. Roux, J. Phys. III France 7, 303 (1997)CrossRefGoogle Scholar
  4. 4.
    D. Bonamy, Phénomènes Collectifs dans les matériaux granulaires (Thesis, Paris, 2000)Google Scholar
  5. 5.
    S. Dorbolo, M. Ausloos, N. Vandewalle, Appl. Phys. Lett. 81, 936 (2002)CrossRefGoogle Scholar
  6. 6.
    N. Vandewalle, S. Dorbolo, Eur. Phys. J. E 5, 129 (2001)CrossRefGoogle Scholar
  7. 7.
    S. Dorbolo, N. Vandewalle, Physica A 311, 307 (2002)CrossRefGoogle Scholar
  8. 8.
    H. Hertz, J. Reine Angewandte Mathematik 92, 156 (1895)Google Scholar
  9. 9.
    M. Houssa, T. Nigam, P.W. Mertens, M.M. Heyns, Appl. Phys. Lett. 73, 1 (1998)CrossRefGoogle Scholar
  10. 10.
    B.J. Last, D.J. Thouless, Phys. Rev. Lett. 27, 1719 (1971)CrossRefGoogle Scholar
  11. 11.
    S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973)CrossRefGoogle Scholar
  12. 12.
    H. Takayasu, Phys. Rev. Lett. 54, 1099 (1985)CrossRefGoogle Scholar
  13. 13.
    L. de Arcangelis, S. Redner, H.J. Herrmann, J. Phys. Lett. 46, L-585 (1985)Google Scholar
  14. 14.
    S. Roux, H.J. Herrmann, Europhys. Lett. 4, 1227 (1987)Google Scholar
  15. 15.
    C. Pennetta, G. Trefán, L. Reggiani, Phys. Rev. Lett. 85, 5238 (2000)CrossRefGoogle Scholar
  16. 16.
    H. Hinrichsen, O. Stenull, H.-K. Janssen, Phys. Rev. E 65, 45104 (2002)CrossRefGoogle Scholar
  17. 17.
    N. Inui, H. Kakuno, Y.Y. Tretyakov, G. Komatsu, K. Kameoka, Phys. Rev. E 59, 6513 (1999)CrossRefGoogle Scholar
  18. 18.
    S. Redner, Phys. Rev. E 25, 5646 (1982)CrossRefGoogle Scholar
  19. 19.
    J. Bigalke, Physica A 272, 281 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.GRASP, Institut de Physique B5Université de LiègeLiègeBelgium

Personalised recommendations