Synthesis of \(\mathsf{\gamma}\)-Fe\(\mathsf{_2}\)O\(\mathsf{_3}\) nanoparticles coated on silica spheres: Structural and magnetic properties

  • S. Chakrabarti
  • S. K. Mandal
  • B. K. Nath
  • D. Das
  • D. Ganguli
  • S. ChaudhuriEmail author
Original Paper


The structural and magnetic properties of \(\gamma\)-Fe2O3 nanoparticles dispersed on silica spheres prepared by sol-gel method were investigated. The properties of \(\gamma\)-Fe2O3 nanoparticles without silica were compared with those on silica spheres. Both the nanoparticle assemblages were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Mössbauer (20, 80 and 300 K) and electron paramagnetic resonance (EPR) (80, 300 K) measurements. The XRD spectra clearly indicated the formation of pure \(\gamma\)-Fe2O3 nanoparticles and the absence of any other form of iron oxide. TEM images showed a uniform distribution of the nanoparticles of size \(\sim\)6 nm on the surfaces of silica spheres (diameter \(\sim\) 35-60 nm). The size of the individual nanoparticles (without silica) varied within 5-6 nm. The low temperature (20 K) Mössbauer spectra consisted of a partially split sextet superimposed on a doublet. The partial magnetic splitting of the sextet at 20 K revealed the effect of surface magnetization and surface modifications of the \(\gamma\)-Fe2O3 nanoparticles coated on silica spheres. The gradual collapse of the partially split sextet into a doublet with increasing temperature indicated the superparamagnetic relaxation exhibited by the \(\gamma\)-Fe2O3 nanoparticles with/without silica. The surface magnetization arising out of mis-aligned spins at the surface as evidenced by Mössbauer spectra was further confirmed by electron paramagnetic resonance (EPR) studies.


Iron Transmission Electron Microscope Fe2O3 Magnetic Property Electron Paramagnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Magnetic Properties of Fine Particles, edited by J.L. Dormann, D. Fiorani (North- Holland, Amsterdam, 1992)Google Scholar
  2. 2.
    K. Haneda, Can. J. Phys. 65, 1233 (1987)Google Scholar
  3. 3.
    C.B. Murray, C.R. Kagan, M.G. Wendi, Science 270, 1335 (1995)Google Scholar
  4. 4.
    M.P. Pileni, J. Phys. Chem. B 105, 3358 (2001)CrossRefGoogle Scholar
  5. 5.
    R.D. Shull, J.J. Ritter, A.J. Shapiro, L.J. Swartzendruber, L.H. Bennett, J. Appl. Phys. 67, 4490 (1990)CrossRefGoogle Scholar
  6. 6.
    M.A. Kastner, Phys. Today 46, 24 (1993)Google Scholar
  7. 7.
    J.M.D. Coey, Phys. Rev. Lett. 27, 1140 (1971)CrossRefGoogle Scholar
  8. 8.
    O. Eriksson, A.M. Boring, R.C. Albers, G.W. Fernando, B.R. Cooper, Phys. Rev. B 45, 2868 (1992)CrossRefGoogle Scholar
  9. 9.
    A.H. Morrish, K. Haneda, J. Appl. Phys. 52, 2496 (1981)CrossRefGoogle Scholar
  10. 10.
    Q.A. Pankhurst, R.J. Pollard, Phys. Rev. Lett. 67, 248 (1991)CrossRefGoogle Scholar
  11. 11.
    R.H. Kodama, A.E. Berkowitz, Phys. Rev. B. 59, 6321 (1999)CrossRefGoogle Scholar
  12. 12.
    O. Iglesias, A. Labarta, Phys. Rev. B 63, 184416 (2001)CrossRefGoogle Scholar
  13. 13.
    H. Kachkachi, A. Ezzir, M. Nogues, E. Tronc, Eur. Phys. J. B 14, 681 (2000)CrossRefGoogle Scholar
  14. 14.
    G. Ennas, A. Musinu, G. Piccaluga, D. Zedda, D. Gatteschi, G. Sangrogorio, J.L. Stanges, G. Concas, G. Spano, Chem. Mater. 10, 495 (1998)CrossRefGoogle Scholar
  15. 15.
    A.E. Berkowitz, in Nanomaterials: Synthesis, Properties and Applications, edited by S. Edelstein, R.C. Cammarata (Institute of Physics Publishing, Bristol, 1996)Google Scholar
  16. 16.
    MRS Bulletin 15, 31 (1990)Google Scholar
  17. 17.
    T. Yoshio, C. Kawaguchi, F. Kanamaru, K. Takahashi, J. Non-Cryst. Solids. 43, 12 (1981)Google Scholar
  18. 18.
    T. Lopez, J. Mendez, T. Zamudio, M. Villa, Mater. Chem. Phys. 30, 161 (1992)CrossRefGoogle Scholar
  19. 19.
    C. Cannas, D. Gatteschi, A. Masinu, G. Piccaluga, C. Sangregorio, J. Phys. Chem. B 102, 7721 (1998)CrossRefGoogle Scholar
  20. 20.
    M.P. Morales, M.J. Munoz-Aguado, J.L. Garcia-Placios, F.J. Lazaro, C.C.J. Serna, J. Magn. Magn. Mater. 183, 232 (1998)CrossRefGoogle Scholar
  21. 21.
    S. Ramesh, I. Felner, Y. Koltypin, A. Gedanken, J. Mat. Res. 15, 944 (2000)Google Scholar
  22. 22.
    N.J. Cherepy, D.B. Liston, J.A. Lovejoy, H. Deng, J.Z. Zheng, J. Phys. Chem. B. 102, 770 (1998)CrossRefGoogle Scholar
  23. 23.
    W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62 (1968)Google Scholar
  24. 24.
    M. Chaterjee, D. Ganguli, Trans. Ind. Ceram. Soc. 45, 95 (1986)Google Scholar
  25. 25.
    E. von Meerwall, Comp. Phys. Commun. 9, 117 (1975)CrossRefGoogle Scholar
  26. 26.
    A. Slawska-Waniewska, M. Gutowski, H.K. Lachowicz, T. Kulik, H. Matyja, Phys. Rev. B 46, 14 594 (1992)CrossRefGoogle Scholar
  27. 27.
    L. Neel, Ann. Geophys. 5, 99 (1949)Google Scholar
  28. 28.
    S. Mørup, J.A. Dumesic, H. Topsoe, Applications of Mössbauer Spectroscopy, edited by R.L. Cohen Vol. II (Academic, New York, 1980), p. 1Google Scholar
  29. 29.
    W.F. Brown, Jr., Phys. Rev. 130, 1677 (1963)CrossRefGoogle Scholar
  30. 30.
    A.H. Morrish, K. Haneda, J. Magn. Magn. Mater. 35, 105 (1983)CrossRefGoogle Scholar
  31. 31.
    S. Mørup, E. Tronc, Phys. Rev. Lett. 72, 3278 (1994)CrossRefGoogle Scholar
  32. 32.
    S. Mørup, F. Bødker, P.V. Hendriksen, S. Linderoth, Phys. Rev. B 52, 287 (1995)CrossRefGoogle Scholar
  33. 33.
    S. Mørup, M.B. Madsen, J. Franck, J. Villadsen, C.J.W. Koch, J. Magn. Magn. Mater. 40, 163 (1983)Google Scholar
  34. 34.
    S. Linderoth, M.D. Bentzon, S. Mørup, Nucl. Instrum. Methods Phys. Res. B 76, 173 (1993)CrossRefGoogle Scholar
  35. 35.
    F. Bødker, S. Morup, S. Linderoth, Phys. Rev. Lett. 72, 282 (1994)CrossRefGoogle Scholar
  36. 36.
    S. Mørup, J. Magn. Magn. Mater. 37, 39 (1983)Google Scholar
  37. 37.
    D. Goldfarb, M. Bernardo, K.G. Strohmaier, D.E.W. Vaughan, H. Thomann, J. Am. Chem. Soc. 116, 6344 (1994)Google Scholar
  38. 38.
    A. Jitianu, M. Crisan, A. Meghea, H. Rau, M. Zaharescu, J. Mater. Chem. 12, 1401 (2002)CrossRefGoogle Scholar
  39. 39.
    D. Prodan, V.V. Grecu, M.N. Grecu, E. Tronc, J.P. Jolivet, Meas. Sci. Technol. 10, L-41 (1999)Google Scholar
  40. 40.
    S. Roy, D. Ganguli, J. Non-Cryst. Sol. 195, 38 (1996)CrossRefGoogle Scholar
  41. 41.
    K. Tanaka, K. Kamiya, M. Matsuoka, T. Yoko, J. Non-Cryst. Sol. 94, 365 (1987)Google Scholar
  42. 42.
    J.L. Dormann, D. Fiorani, E. Tronc, Adv. Chem. Phys. 98, 283 (1997)Google Scholar
  43. 43.
    R.D. Sánchez, M.A. López-Quintela, J. Rivas, A. González-Penedo, A.J. Garc\`ia-Bastida, C.A. Ramos, R.D. Zysler, S. Ribeiro Guevara, J. Phys. Cond. Matt. 11, 5643 (1999)CrossRefGoogle Scholar
  44. 44.
    S.E. Dapurkar, P. Sevlam, Mater. Phys. Mech. 4, 13 (2001)Google Scholar
  45. 45.
    M. Ibrahim, G. Edwards, B. Ganguly, G.P. Huffman, J. Appl. Phys. 75, 5873 (1994)CrossRefGoogle Scholar
  46. 46.
    H. Kodera, J. Phys. Soc. Jpn 28, 89 (1970)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • S. Chakrabarti
    • 1
  • S. K. Mandal
    • 2
  • B. K. Nath
    • 2
  • D. Das
    • 2
  • D. Ganguli
    • 1
  • S. Chaudhuri
    • 1
    Email author
  1. 1.Department of Materials ScienceIndian Association for the Cultivation of ScienceKolkataIndia
  2. 2.Department of Materials ScienceInter University Consortium for DAE FacilitiesKolkataIndia

Personalised recommendations