Future experiments at MAMI

  • Reinhard Beck
  • Alexander Starostin
Laboratory physics programs and new facilities


A new experimental program is about to get underway at the Mainz Microtron (MAMI) Facility. The experimental apparatus consists of the famous Crystal Ball together with TAPS detector as a forward wall, and a central tracker. This configuration provides a geometrical acceptance close to 4π combined with good energy and angular resolution in particular for neutral final states. After the energy upgrade of the Mainz Microtron (MAMI-C), the Crystal Ball and TAPS setup will be equipped with a frozen-spin polarized target filled with \(^1 \vec{\rm H}\), or \(^2 \vec{\rm H}\) to perform new high precision, high statistics measurements of neutral meson production on the nucleon up to 1.5 GeV incident photon energies. In particular it provides a unique opportunity to investigate the GDH sum rule on a neutron target in the contributions by reactions \({\vec \gamma} {\vec n} \to \pi^0 n\), \({\vec \gamma} {\vec n} \to \pi^0 \pi^0 n\) and \({\vec \gamma} {\vec n} \to \eta n\).


Photon Energy Experimental Program Angular Resolution Incident Photon Good Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. R. Novotny: IEEE Trans. Nucl. Sci. 38, 379 (1991)Google Scholar
  2. 2. A. Starostin et al.: Phys. Rev. C 64, 055205 (2001)Google Scholar
  3. 3. W.B. Tippens et al.: Phys. Rev. Lett. 87, 192001 (2001)Google Scholar
  4. 4. T.D. Stanislaus et al.: Nucl. Instrum. Methods A 462, (2001)Google Scholar
  5. 5. S. Prakhov et al.: Phys. Rev. Lett. 84, 4802 (2000)Google Scholar
  6. 6. A. Starostin et al.: Phys. Rev. Lett. 85, 5539 (2000)Google Scholar
  7. 7. I. Anthony et al.: Nucl. Instrum. Methods A 301, 230 (1991)Google Scholar
  8. 8. K.-H. Kaiser et al.: Proc. PAC’99, p. 2915Google Scholar
  9. 9. A. Jankowiak et al.: Proc. EPAC2002, Paris, (2002)Google Scholar
  10. 10. B. Nefkens et al.: Phys. Rev. D18, 3911 (1978)Google Scholar
  11. 11. M. Kotulla et al.: Phys. Rev. Lett. 89, 272001 (2002)Google Scholar
  12. 12. D. Drechsel and M. Vanderhaeghen: Phys. Rev. C 64, 065202 (2001)Google Scholar
  13. 13. A.I. Machavariani and Amand Faessler: arXiv:nucl-th/0202060 (2002)Google Scholar
  14. 14. R. Rapp et al.: Phys. Rev. C 59, R1237 (1999)Google Scholar
  15. 15. M.J. Vicente Vacas and E. Oset: Phys. Rev. C 60, 064621 (1999)Google Scholar
  16. 16. F. Bonutti et al.: Phys. Rev. Lett. 77, 603 (1996)Google Scholar
  17. 17. E.D. Bloom and C.W. Peck: Ann. Rev. Nucl. Sci. 33, 143 (1983)Google Scholar
  18. 18. B.M.K. Nefkens, S. Prakhov, and A. Starostin: nucl-ex/0202007Google Scholar

Copyright information

© Società Italiana di Fisica, Springer-Verlag 2004

Authors and Affiliations

  • Reinhard Beck
    • 1
  • Alexander Starostin
    • 2
  1. 1.Institut für Kernphysik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany
  2. 2.Dept. of Physics and Astronomy, UCLA, box 1547, Los Angeles, CA, 90025-1547, USA

Personalised recommendations