Advertisement

The study of high density matter at RHIC

  • Thomas S. Ullrich
Cold and hot nuclear matter

Abstract.

QCD predicts a phase transition between hadronic matter and a Quark Gluon Plasma at high energy density. The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at RHIC indicated that the conditions to create a new state of matter are indeed reached in the collisions of heavy nuclei. Studies of particle spectra and their correlations at low transverse momenta provide evidence of strong pressure gradients in the highly interacting dense medium and hint that we observe a system in thermal equilibrium. Recent runs with high statistics allow us to explore the regime of hard-scattering processes where the suppression of hadrons at large transverse momentum, and quenching of di-jets are observed thus providing further evidence for extreme high density matter created in collisions at RHIC.

PACS codes.

25.75.-q - Relativistic heavy-ion collisions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. J.C. Collins and M.J. Perry: Phys. Rev. Lett. 34, 1353 (1975)Google Scholar
  2. 2. See for example K. Rajagopal these proceedingsGoogle Scholar
  3. 3. K. Rajagopal and F. Wilczek: hep-ph/0011333Google Scholar
  4. 4. K. Kanaya: hep-ph/0209116Google Scholar
  5. 5. F. Karsch: Nucl. Phys. A 698, 199c (2002)Google Scholar
  6. 6. Z. Fodor: hep-lat/0209191Google Scholar
  7. 7. D. Boyanovsky: hep-ph/0102120Google Scholar
  8. 8. N.K. Glendenning and F. Weber: astro-ph/0003426Google Scholar
  9. 9. J.W. Harris and B. Müller: Annu. Rev. Nucl. Part. Sci. B 46, 71 (1966)Google Scholar
  10. 10. T. Roser: Nucl. Phys. A 698, 23c (2002)Google Scholar
  11. 11. The Relativistic Heavy Ion Collider and Experiments: Nucl. Inst. Meth. A 499, Issues 2-3 (2003)Google Scholar
  12. 12. Proceedings of Quark Matter 2001, Nucl. Phys. A 698, (2002)Google Scholar
  13. 13. Proceedings of Quark Matter 2002: Nucl. Phys. A 715 (2003)Google Scholar
  14. 14. B.B. Back et al.: nucl-ex/0210015Google Scholar
  15. 15. T.S. Ullrich: Nucl. Phys. A 715, 399c (2003)Google Scholar
  16. 16. D. Kharzeev and M. Nardi: Phys. Lett. B 507, 121 (2001)Google Scholar
  17. 17. B.B. Back et al.: Phys. Rev. C 65, 061901 (2002)Google Scholar
  18. 18. K.J. Eskola, K. Kajantie, and K. Tuominen: Phys. Lett. B 497, 29 (2001)Google Scholar
  19. 19. D. Kharzeev and E. Levin: Phys. Lett. B 523, 79 (2001)Google Scholar
  20. 20. A. Bazilevski: Nucl. Phys. A 715, 486c (2003)Google Scholar
  21. 21. STAR collaboration: private communicationGoogle Scholar
  22. 22. J.D. Bjorken: Phys. Rev. D 27, 140 (1983)Google Scholar
  23. 23. T. Alber et al.: Phys. Rev. Lett. 75, 3814 (1995)Google Scholar
  24. 24. F. Karsch: Nucl. Phys. A 698, 199 (2002)Google Scholar
  25. 25. R. Hagedorn: Suppl. A. Nuovo Cimento Vol III, No.2 150 (1965)Google Scholar
  26. 26. U. Heinz: Nucl. Phys. A 661, 140 (1999)Google Scholar
  27. 27. P. Braun-Munzinger, I. Heppe, and J. Stachel: Phys. Lett. B 465, 15 (1999)CrossRefGoogle Scholar
  28. 28. F. Becattini et al.: Phys. Rev. C 64, 024901 (2001)Google Scholar
  29. 29. P. Braun-Munzinger et al.: Phys. Lett. B 518, 41-46 (2001)Google Scholar
  30. 30. F. Becattini: J. Phys. G 28, 1553 (2002)Google Scholar
  31. 31. G. Van Buren et al.: Nucl. Phys. A 715, 129c (2003)Google Scholar
  32. 32. M. van Leeuwen et al.: Nucl. Phys. A 715, 161c (2003)Google Scholar
  33. 33. P.F. Kolb and R. Rapp: Phys. Rev. C 67, 044903 (2003)Google Scholar
  34. 34. E. Schnedermann, J. Sollfrank, and U. Heinz: Phys. Rev. C 48, 2462 (1993)CrossRefGoogle Scholar
  35. 35. J.D. Bjorken: FERMILAB-Pub-82/59-THYGoogle Scholar
  36. 36. M. Gyulassy and M. Plümer: Phys. Lett. B 432, 121 (1990); R. Baier et al.: Phys. Lett. B 345, 277 (1995)Google Scholar
  37. 37. R. Baier, D. Schiff, and B.G. Zakharov: Annu. Rev. Nucl. Part. Sci. B 50, 37 (2000)CrossRefGoogle Scholar
  38. 38. X.N. Wang and M. Gyulassy: Phys. Rev. Lett. 68, 1480 (1992); X.N. Wang: Phys. Rev. C 58, 2321 (1998)Google Scholar
  39. 39. E. Wang and X.N. Wang: Phys. Rev. Lett. 89, 162301 (2002); F. Arleo: Phys. Lett. B 532, 231 (2002)Google Scholar
  40. 40. J. Adams et al.: nucl-ex/0305015Google Scholar
  41. 41. S.S. Adler et al.: nucl-ex/0304022Google Scholar
  42. 42. K. Adcox et al.: Phys. Rev. Lett. 88, 022301 (2002); C. Adler et al.: Phys. Rev. Lett. 89, 202301 (2002)Google Scholar
  43. 43. J. Velkovska: Proceedings of Strange Quark Matter 2003, J. Phys. G. to be publishedGoogle Scholar
  44. 44. P. Sorenson et al.: nucl-ex/0305008Google Scholar
  45. 45. B.B. Back et al.: nucl-ex/0302015Google Scholar
  46. 46. X.N. Wang: nucl-th/0305010; private communication. Calculations use model parameters μ 0=2.0 GeV and ε 0=2.04 GeV/fmGoogle Scholar
  47. 47. I. Vitev and M. Gyulassy: Phys. Rev. Lett. 89, 252301 (2002)Google Scholar
  48. 48. D. Antreasyan et al.: Phys. Rev. D 19, 764 (1979); P.B. Straub et al.: Phys. Rev. Lett. 68, 452 (1992)Google Scholar
  49. 49. D. Kharzeev, E. Levin, and L. McLerran: Phys. Lett. B 561, 93 (2003); D. Kharzeev: private communicationCrossRefGoogle Scholar
  50. 50. R. Lietava, J. Pisut, N. Pisutova, and B. Tomasik: Eur. Phys. J. C 28, 119 (2003)Google Scholar
  51. 51. K. Gallmeister, C. Greiner, and Z. Xu: Phys. Rev. C 67, 044905 (2003)Google Scholar
  52. 52. C. Adler et al.: Phys. Rev. Lett. 90, 082302 (2003)Google Scholar
  53. 53. K. Adcox et al.: Phys. Rev. Lett. 88, 192302 (2002)Google Scholar
  54. 54. J. Nagle et al.: nucl-ex/0209015Google Scholar

Copyright information

© Società Italiana di Fisica, Springer-Verlag 2004

Authors and Affiliations

  • Thomas S. Ullrich
    • 1
  1. 1.Brookhaven National Laboratory, Upton New York 11973-5000, USA

Personalised recommendations