Advertisement

Quark matter in neutron stars

  • Marcello Baldo
Cold and hot nuclear matter
  • 42 Downloads

Abstract.

The density of nuclear matter in the interior of neutron stars can reach values, for the largest masses, which can be compatible with the onset of hadron deconfinement. For the study of this possibility the only viable method at present is the comparison between the available nucleon and quark Equations of State (EoS) at increasing baryon density. It is then possible to trace the transition to the deconfined phase or the appearence of a mixed phase. We present recent results on the structure of neutron stars based on this procedure. For the nucleon matter, the microscopic many-body theory of the Nuclear Equation of State is discussed in the framework of the Bethe-Brueckner-Goldstone method. The expansion is extended up to the three hole-line diagrams contribution. For the quark matter, different models are used to generate the quark EoS. Despite the maximum mass of neutron stars turns out to be only marginally sensitive to the considered quark EoS, it is found that the structure of neutron stars can drastically depend on the adopted model.

PACS codes.

21.65.+f - Nuclear matter 97.60.Jd - Neutron Stars 26.60.+c - Nuclear aspects of Neutron Stars 24.10.Cn - Many-body 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. For a pedagogical introduction: see Nuclear Methods and the Nuclear equation of State, Edited by M. Baldo, World Scientific, Singapore, International Review of Nuclear Physics Vol. 9, 1999Google Scholar
  2. 2. B.D. Day: Brueckner–Bethe Calculations of Nuclear Matter, Proceedings of the School E. Fermi, Varenna 1981, Course LXXIX, ed. A. Molinari, (Editrice Compositori, Bologna, 1983), p. 1–72; Rev. Mod. Phys. 39, 719 (1967)Google Scholar
  3. 3. F. Coester, S. Cohen, B.D. Day, and C.M. Vincent: Phys. Rev. C 1, 769 (1970); B.D. Day: Comments Nucl. Part. Phys. 11, 115 (1983)CrossRefGoogle Scholar
  4. 4. J.P. Jeukenne, A. Lejeunne, and C. Mahaux: Phys. Rep. C 25, 83 (1976); M. Baldo, I. Bombaci, L.S. Ferreira, G. Giansiracusa, and U. Lombardo: Phys. Rev. C 43, 2605 (1991)CrossRefGoogle Scholar
  5. 5. R.B. Wiringa, V.G.J. Stocks, and R. Schiavilla: Phys. Rev. C 51, 38 (1995)CrossRefGoogle Scholar
  6. 6. L.D. Fadeev: Mathematical Aspects of the Three-Body Problem in Quantum Scattering Theory, Davey, New York 1965Google Scholar
  7. 7. R. Rajaraman and H. Bethe: Rev. Mod. Phys. 39, 745 (1967)Google Scholar
  8. 8. B.D. Day: Phys. Rev. C 24, 1203 (1981); Phys. Rev. Lett. 47, 226 (1981)Google Scholar
  9. 9. H.Q. Song, M. Baldo, G. Giansiracusa, and U. Lombardo: Phys. Rev. Lett. 81, 1584 (1998)CrossRefGoogle Scholar
  10. 10. M. Baldo, A. Fiasconaro, G. Giansiracusa, and U. Lombardo e H. Q. Song: Phys. Rev. C 65, 017303 (2001)Google Scholar
  11. 11. G.E. Brown, W. Weise, G. Baym, and J. Speth: Comm. Nucl. Part. Phys. 17, 39 (1987)zbMATHGoogle Scholar
  12. 12. J. Fuyita and H. Miyazawa: Progr. in Theor. Phys. 17, 360 (1957); C. Hadjuk, P.U. Sauer, and W. Streuve: Nucl. Phys. A 405, 581 (1983)Google Scholar
  13. 13. P. Grangé, A. Lejeune, M. Martzolff, and J.-F. Mathiot: Phys. Rev C 40, 1040 (1989)Google Scholar
  14. 14. B. Krippa, M.C. Birse, J.A. McGovern, and N.R. Walet: Phys. Rev C 67, 031301 (2003)Google Scholar
  15. 15. J. Carlson, V.R. Pandharipande, and R.B. Wiringa: Nucl. Phys. A 401, 59 (1983)CrossRefGoogle Scholar
  16. 16. S.L. Shapiro and S.A. Teukolsky: Black Holes, White Dwarfs and Neutron Stars, (John Wiley & Sons, New York, 1983)Google Scholar
  17. 17. P. Maessen, T. Rijken, and J. de Swart: Phys. Rev. C 40, 2226 (1989)CrossRefGoogle Scholar
  18. 18. M. Baldo, I. Bombaci, and G.F. Burgio: Astron. and Astr. 328, 274 (1997)Google Scholar
  19. 19. M. Baldo, G.F. Burgio, and H.-J. Schulze: Phys. Rev. 61C, 055801 (2000)CrossRefGoogle Scholar
  20. 20. J.W. Negele and D. Vautherin: Nucl. Phys. A 207, 298 (1973)Google Scholar
  21. 21. R. Feynman, F. Metropolis, and E. Teller: Phys. Rev. 75, 1561 (1949)CrossRefzbMATHGoogle Scholar
  22. 22. G. Baym, C. Pethick, and D. Sutherland: Astrophys. J. 170, 299 (1971)CrossRefGoogle Scholar
  23. 23. A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, and V.F. Weisskopf: Phys. Rev. D 9, 3471 (1974)CrossRefGoogle Scholar
  24. 24. M. and S. Reddy: Phys. Rev. 67C, 074024 (2003)Google Scholar
  25. 25. A. Akmal and V.R. Pandharipande: Phys. Rev. C 56, 2261 (1997)Google Scholar
  26. 26. M. Alford, K. Rajagopal, and F. Wilczek: Phys. Lett. B 422, 247 (1998)CrossRefGoogle Scholar
  27. 27. M. Alford, K. Rajagopal, and F. Wilczek: Nucl. Phys. B 537, 443 (1999)CrossRefGoogle Scholar
  28. 28. M. Alford: Ann. Rev. Nucl. Part. Sci. 51, 131 (2001)Google Scholar
  29. 29. G.F. Burgio, M. Baldo, P.K. Sahu, A.B. Santra, and H.-J. Schulze: Phys. Lett. B 562, 19 (2002)Google Scholar
  30. 30. M. Baldo and G.F. Burgio: Microscopic Theory of the Nuclear equation of State and Neutron Star Structure, in “Physics of Neutron Star Interiors”, Eds. D. Blaschke, N. Glendenning, and A. Sedrakian, Lectures Notes in Physics, Springer, vol. 578 (2001), pp. 1-30Google Scholar
  31. 31. R.A. Hulse and J.H. Taylor: Astrophys. J. 195, L51 (1975)Google Scholar
  32. 32. N.K. Glendenning: Phys. Rev. D 46, 1274 (1992)Google Scholar
  33. 33. P.K. Sahu: Phys. Rev. C 62, 045801 (2000)Google Scholar
  34. 34. P.K. Sahu and A. Ohnishi: Nucl. Phys. A 691, 439 (2001)Google Scholar
  35. 35. T. Hatsuda and T. Kunihiro: Phys. Rep. 247, 221 (1994)Google Scholar
  36. 36. M. Buballa and M. Oertel: Nucl. Phys. A 703, 770 (2002)Google Scholar
  37. 37. N.K. Glendenning: Compact Stars (Springer, New York, 1996)Google Scholar
  38. 38. Burgio, M. Baldo, P.K. Sahu and H.-J. Schulze: Phys. Rev. C 66, 025802 (2002)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica, Springer-Verlag 2004

Authors and Affiliations

  • Marcello Baldo
    • 1
  1. 1.INFN, and Dipartimento di Fisica dell’ Universita’ di Catania, via S. Sofia 64, 95123 Catania, Italy

Personalised recommendations