J/Ψ and heavy-quark production in E866/FNAL and PHENIX

  • M.J. Leitch
Hadrons in the nuclear medium


The production of heavy quarks in nuclei is modified from that for a free nucleon by a number of nuclear effects including shadowing of the nuclear gluon distributions, energy loss of the incident gluon, and, in the case of the J/Ψ, disassociation of the \(c\bar{c}\) pair (absorption) as it exits the nucleus. Measurements in the E866/NuSea 800 GeV fixed target experiment show a large suppression of the closed-charm yield with strong kinematical dependencies and with a slightly stronger suppression for the Ψ’ than for the J/Ψ near x F =0. On the other hand, a measurement of the D meson nuclear dependence near x F =0 shows no suppression. At RHIC the J/Ψ is thought to be a key signature for the creation of a quark-gluon plasma (QGP) in heavy-ion collisions, but the non-QGP suppression already seen in p-A collisions at lower energies shows that we must first understand these non-QGP effects on the J/Psi in order to gain a clear understanding of its production in nucleus-nucleus collisions. The most recent run at RHIC included deuteron-gold collisions and will serve as a baseline for these cold nuclear matter effects at RHIC energy. Here I report on the first results for the J/Ψ and for open-charm at PHENIX including the d-Au results. The present knowledge of gluon shadowing is very uncertain, especially in the large rapidity region of the PHENIX muon arms, and these measurements should help us determine how strong it is and perhaps even its dependence on impact parameter.

PACS codes.

24.85.+p - Quarks, gluons, and QCD in nuclei and nuclear processes 25.75.-g - Relativistic heavy-ion collisions 25.75.Dw - Particle and resonance production 14.65.Dw - Charm quarks 14.40.Lb - Charm mesons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. M.A. Vasiliev et al. (E866/NuSea Collaboration): Phys. Rev. Lett. 83, 2304 (1999)Google Scholar
  2. 2. D.M. Alde et al.: Phys. Rev. Lett 64, 2479 (1990)Google Scholar
  3. 3. K.J. Eskola, V.J. Kolhinen, and R. Vogt: hep-ph/0104124Google Scholar
  4. 4. K.J. Eskola, V.J. Kolhimen, and P.V. Ruuskanen: Nucl. Phys. B 535, 351 (1998) and K.J. Eskola, V.J. Kolhinen, and C.A. Salgado: Eur. Phys. J. C 9, 61 (1999) and hep-ph/9807297CrossRefGoogle Scholar
  5. 5. M.J. Leitch et al.: Phys. Rev. Lett. 84, 3256 (2000)Google Scholar
  6. 6. M.J. Leitch et al.: Phys. Rev. Lett. 72, 2542 (1994)Google Scholar
  7. 7. J. Badier et al.: Z. Phys. C 20, 101 (1982)Google Scholar
  8. 8. B.Z. Kopeliovich, A.V. Tarasov, and J. Hufner: hep-ph/0104256Google Scholar
  9. 9. D.M. Alde et al.: Phys. Rev. Lett 66, 133 (1991)Google Scholar
  10. 10. D.M. Alde et al.: Phys. Rev. Lett 66, 2285 (1991)Google Scholar
  11. 11. M.C. Abreu et al.: Phys. Lett. B 444, 516 (1998)Google Scholar
  12. 12. E. Scomparin, Quark Matter 2001 and M.C. Abreu et al.: Phys. Lett. B 438, 35 (1998)Google Scholar
  13. 13. Kopeliovich, Tarasov, and Hufner: Nucl. Phys. A 696, 669 (2001) and hep-ph/0104256CrossRefGoogle Scholar
  14. 14. D. Antreasyn et al.: Phys. Rev. D 19, 764 (1979)Google Scholar
  15. 15. S. Adler et al. (PHENIX collaboration): submitted to Phys. Rev. Lett. and hep-ex/0307019Google Scholar

Copyright information

© Società Italiana di Fisica, Springer-Verlag 2004

Authors and Affiliations

  • M.J. Leitch
    • 1
  1. 1.P-25, MS H846, Los Alamos National Laboratory, Los Alamos NM 87545

Personalised recommendations