Investigating the rp-process with the Canadian Penning trap mass spectrometer

  • J. A. Clark
  • R. C. Barber
  • B. Blank
  • C. Boudreau
  • F. Buchinger
  • J. E. Crawford
  • J. P. Greene
  • S. Gulick
  • J. C. Hardy
  • A. A. Hecht
  • A. Heinz
  • J. K. P. Lee
  • A. F. Levand
  • B. F. Lundgren
  • R. B. Moore
  • G. Savard
  • N. D. Scielzo
  • D. Seweryniak
  • K. S. Sharma
  • G. D. Sprouse
  • W. Trimble
  • J. Vaz
  • J. C. Wang
  • Y. Wang
  • B. J. Zabransky
  • Z. Zhou
ENAM 2004

Abstract.

The Canadian Penning trap (CPT) mass spectrometer at the Argonne National Laboratory makes precise mass measurements of nuclides with short half-lives. Since the previous ENAM conference, many significant modifications to the apparatus were implemented to improve both the precision and efficiency of measurement, and now more than 60 radioactive isotopes have been measured with half-lives as short as one second and with a precision ( Δm/m) approaching 10-8. The CPT mass measurement program has concentrated so far on nuclides of importance to astrophysics. In particular, measurements have been obtained of isotopes along the rp-process path, in which energy is released from a series of rapid proton-capture reactions. An X-ray burst is one possible site for the rp-process mechanism which involves the accretion of hydrogen and helium from one star onto the surface of its neutron star binary companion. Mass measurements are required as key inputs to network calculations used to describe the rp-process in terms of the abundances of the nuclides produced, the light-curve profile of the X-ray bursts, and the energy produced. This paper will present the precise mass measurements made along the rp-process path with particular emphasis on the “waiting-point” nuclides 68Se and 64Ge.

PACS.

21.10.Dr Binding energies and masses 26.30.+k Nucleosynthesis in novae, supernovae, and other explosive environments 26.50.+x Nuclear physics aspects of novae, supernovae, and other explosive environments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Clark, in Exotic Nuclei and Atomic Masses (ENAM2001), Hämeenlinna, Finland, 2001, edited by J. Äystö, P. Dendooven, A. Jokinen, M. Leino (Springer, Berlin, 2003) p. 39.Google Scholar
  2. 2.
    J.A. Clark, Phys. Rev. Lett. 92, 192501 (2004).CrossRefPubMedGoogle Scholar
  3. 3.
    G. Savard, Phys. Rev. C 70, 042501 (2004).CrossRefGoogle Scholar
  4. 4.
    J.A. Clark, in The r-Process: The Astrophysical Origin of the Heavy Elements and Related Rare Isotope Accelerator Physics, Seattle, Washington, 2004, edited by Y.-Z. Qian, E. Rehm, H. Schatz, F.-K. Thielemann (World Scientific, Singapore, 2004) p. 11.Google Scholar
  5. 5.
    K.S. Sharma, these proceedings.Google Scholar
  6. 6.
    R.K. Wallace, S.E. Woosley, Astrophys. J. Suppl. Ser. 45, 389 (1981).CrossRefGoogle Scholar
  7. 7.
    H. Schatz, Phys. Rep. 294, 167 (1998).CrossRefGoogle Scholar
  8. 8.
    M. Wiescher, J. Phys. G 25, R133 (1999).Google Scholar
  9. 9.
    T. Strohmayer, L. Bildsten, in Compact Stellar X-Ray Sources, edited by W.H.G. Lewin, M. van der Klis (Cambridge University Press, Cambridge) in press.Google Scholar
  10. 10.
    G. Savard, Nucl. Phys. A 626, 353 (1997).CrossRefGoogle Scholar
  11. 11.
    J. Clark, Nucl. Instrum. Methods Phys. Res. B 204, 487 (2003).CrossRefGoogle Scholar
  12. 12.
    G. Savard, Nucl. Instrum. Methods Phys. Res. B 204, 582 (2003).CrossRefGoogle Scholar
  13. 13.
    C. Boudreau, Master’s thesis, McGill University, 2001.Google Scholar
  14. 14.
    G. Savard, Phys. Lett. A 158, 247 (1991).CrossRefGoogle Scholar
  15. 15.
    L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986).Google Scholar
  16. 16.
    G. Bollen, J. Appl. Phys. 68, 4355 (1990).CrossRefGoogle Scholar
  17. 17.
    M. König, Int. J. Mass Spectrom. Ion Processes 142, 95 (1995).CrossRefGoogle Scholar
  18. 18.
    G. Bollen, Nucl. Phys. A 693, 3 (2001).CrossRefGoogle Scholar
  19. 19.
    G. Gräff, Z. Phys. A 297, 35 (1980).CrossRefGoogle Scholar
  20. 20.
    G.F. Lima, Phys. Rev. C 65, 044618 (2002).CrossRefGoogle Scholar
  21. 21.
    M. Chartier, private communication.Google Scholar
  22. 22.
    A. Wöhr, Nucl. Phys. A 742, 349 (2004).CrossRefGoogle Scholar
  23. 23.
    G. Audi, Nucl. Phys. A 729, 337 (2003).CrossRefGoogle Scholar
  24. 24.
    B.A. Brown, Phys. Rev. C 65, 045802 (2002).CrossRefGoogle Scholar
  25. 25.
    R. Pfaff, Phys. Rev. C 53, 1753 (1996).CrossRefGoogle Scholar
  26. 26.
    J.A. Clark, in preparation.Google Scholar
  27. 27.
    H. Schatz, Phys. Rev. Lett. 86, 3471 (2001).CrossRefPubMedGoogle Scholar
  28. 28.
    D.D. Clayton, F. Hoyle, Astrophys. J. 187, L101 (1974).Google Scholar
  29. 29.
    J. Jos\’ e, Astrophys. J. 520, 347 (1999).CrossRefGoogle Scholar
  30. 30.
    J.C. Hardy, Phys. Rev. C 9, 252 (1974).CrossRefGoogle Scholar
  31. 31.
    J.A. Nolen, Nucl. Instrum. Methods 115, 189 (1974).CrossRefGoogle Scholar
  32. 32.
    S. Bishop, Phys. Rev. Lett. 90, 162501 (2003).CrossRefPubMedGoogle Scholar
  33. 33.
    G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995).CrossRefGoogle Scholar
  34. 34.
    J.C. Hardy, Phys. Rev. Lett. 91, 082501 (2003).CrossRefPubMedGoogle Scholar
  35. 35.
    M. Mukherjee, Phys. Rev. Lett. 93, 150801 (2004).CrossRefPubMedGoogle Scholar
  36. 36.
    D. Seweryniak, Phys. Rev. Lett. 94, 032501 (2005).CrossRefPubMedGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • J. A. Clark
    • 1
    • 2
  • R. C. Barber
    • 2
  • B. Blank
    • 1
    • 3
  • C. Boudreau
    • 1
    • 4
  • F. Buchinger
    • 4
  • J. E. Crawford
    • 4
  • J. P. Greene
    • 1
  • S. Gulick
    • 4
  • J. C. Hardy
    • 5
  • A. A. Hecht
    • 1
    • 6
  • A. Heinz
    • 1
  • J. K. P. Lee
    • 4
  • A. F. Levand
    • 1
  • B. F. Lundgren
    • 1
  • R. B. Moore
    • 4
  • G. Savard
    • 1
  • N. D. Scielzo
    • 1
  • D. Seweryniak
    • 1
  • K. S. Sharma
    • 2
  • G. D. Sprouse
    • 7
  • W. Trimble
    • 1
  • J. Vaz
    • 1
    • 2
  • J. C. Wang
    • 1
    • 2
  • Y. Wang
    • 1
    • 2
  • B. J. Zabransky
    • 1
  • Z. Zhou
    • 1
  1. 1.Physics DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
  3. 3.Centre d’Etudes Nucléaires de Bordeaux-GradignanGradignan CedexFrance
  4. 4.Department of PhysicsMcGill UniversityMontrealCanada
  5. 5.Cyclotron InstituteTexas A&M UniversityCollege StationUSA
  6. 6.Department of ChemistryUniversity of MarylandCollege ParkUSA
  7. 7.Physics DepartmentSUNY, Stony Brook UniversityStony BrookUSA

Personalised recommendations