TITAN project status report and a proposal for a new cooling method of highly charged ions

  • V. L. Ryjkov
  • L. Blomeley
  • M. Brodeur
  • P. Grothkopp
  • M. Smith
  • P. Bricault
  • F. Buchinger
  • J. Crawford
  • G. Gwinner
  • J. Lee
  • J. Vaz
  • G. Werth
  • J. Dilling
  • the TITAN Collaboration
ENAM 2004

Abstract.

The TITAN facility for precision mass measurements of short-lived isotopes is currently being constructed at the ISAC radioactive beam facility at TRIUMF, Vancouver, Canada. Current status and developments in the project are reported. A new method for cooling of highly charged ions (HCI) with singly charged ions in a Penning trap, critically needed for precision measurements, is presented. Estimates show that the technique is promising and can be applied to cooling of highly charged short-lived isotope ions without recombination losses.

PACS.

07.75.+h Mass spectrometers 21.10.Dr Binding energies and masses 32.10.Bi Atomic masses, mass spectra, abundances, and isotopes 52.27.Jt Nonneutral plasmas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Bergstrom, Nucl. Instrum. Methods A 487, 618 (2002).Google Scholar
  2. 2.
    W. Quint, Hyperfine Interact. 132, 457 (2001).CrossRefGoogle Scholar
  3. 3.
    J. Dilling, Nucl. Instrum. Methods B 204, 492 (2003).CrossRefGoogle Scholar
  4. 4.
    J.R. Crespo Lopez-Urrutia, Phys. Rev. Lett. 77, 826 (1996).CrossRefPubMedGoogle Scholar
  5. 5.
    F. Wenander, Nucl. Phys. A 701, 528 (2002).CrossRefGoogle Scholar
  6. 6.
    H.G. Dehmelt, Phys. Rev. Lett. 21, 127 (1968).CrossRefGoogle Scholar
  7. 7.
    D.S. Hall, Phys. Rev. Lett. 77, 1962 (1996).CrossRefPubMedGoogle Scholar
  8. 8.
    F. Herfurth, Nucl. Instrum. Methods A 469, 254 (2001).Google Scholar
  9. 9.
    A. Nieminen, Nucl. Instrum. Methods A 469, 244 (2001).Google Scholar
  10. 10.
    K. Blaum, Nucl. Instrum. Methods B 204, 478 (2003).CrossRefGoogle Scholar
  11. 11.
    G. Gräff, Z. Phys. A 297, 35 (1980).CrossRefGoogle Scholar
  12. 12.
    G. Bollen, J. Appl. Phys. 68, 4355 (1990).CrossRefGoogle Scholar
  13. 13.
    J. Bernard, Nucl. Instrum. Methods A 532, 224 (2004).Google Scholar
  14. 14.
    S.L. Rolston, Hyperfine Interact. 44, 233 (1989).Google Scholar
  15. 15.
    L. Spitzer, Physics of Fully Ionized Gases (Interscience, New York, 1956).Google Scholar
  16. 16.
    E.M. Hollmann, Phys. Rev. Lett. 82, 4839 (1999).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • V. L. Ryjkov
    • 1
  • L. Blomeley
    • 4
  • M. Brodeur
    • 2
  • P. Grothkopp
    • 1
  • M. Smith
    • 2
  • P. Bricault
    • 1
  • F. Buchinger
    • 4
  • J. Crawford
    • 4
  • G. Gwinner
    • 3
  • J. Lee
    • 4
  • J. Vaz
    • 1
  • G. Werth
    • 5
  • J. Dilling
    • 1
  • the TITAN Collaboration
    • 1
  1. 1.TRIUMF National LaboratoryVancouverCanada
  2. 2.Department of PhysicsUniversity of British ColumbiaVancouverCanada
  3. 3.University of ManitobaWinnipegCanada
  4. 4.Department of PhysicsMcGill UniversityMontrealCanada
  5. 5.Department of PhysicsUniversity of MainzMainzGermany

Personalised recommendations