Advertisement

Beta-decay studies near 100Sn

  • M. Karny
  • L. Batist
  • A. Banu
  • F. Becker
  • A. Blazhev
  • K. Burkard
  • W. Brüchle
  • J. Döring
  • T. Faestermann
  • M. Górska
  • H. Grawe
  • Z. Janas
  • A. Jungclaus
  • M. Kavatsyuk
  • O. Kavatsyuk
  • R. Kirchner
  • M. La Commara
  • S. Mandal
  • C. Mazzocchi
  • K. Miernik
  • I. Mukha
  • S. Muralithar
  • C. Plettner
  • A. Płochocki
  • E. Roeckl
  • M. Romoli
  • K. Rykaczewski
  • M. Schädel
  • K. Schmidt
  • R. Schwengner
  • J. Żylicz
ENAM 2004

Abstract.

The β-decay of 102Sn was studied by using high-resolution germanium detectors as well as a Total Absorption Spectrometer (TAS). A decay scheme has been constructed based on the γ-γ coincidence data. The total experimental Gamow-Teller strength BGTexp of 102Sn was deduced from the TAS data to be 4.2(9). A search for β-delayed γ-rays of 100Sn decay remained unsuccessful. However, a Gamow-Teller hindrance factor h = 2.2(3), and a cross-section of about 3nb for the production of 100Sn in fusion-evaporation reaction between 58Ni beam and 50Cr target have been estimated from the data on heavier tin isotopes. The estimated hindrance factor is similar to the values derived for lower shell nuclei.

PACS.

21.10.-k Properties of nuclei; nuclear energy levels 23.40.-s β decay; double β decay; electron and muon capture 27.60.+j 90≤A≤149 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.T. Chou, E.K. Warburton, B.A. Brown, Phys. Rev. C 47, 163 (1993).CrossRefGoogle Scholar
  2. 2.
    B.H. Wildenthal, M.S. Curtin, B.A. Brown, Phys. Rev. C 28, 1343 (1983).CrossRefGoogle Scholar
  3. 3.
    G. Martinez-Pinedo, A. Poves, E. Caurier, A.P. Zuker, Phys. Rev. C 53, R2602 (1996).Google Scholar
  4. 4.
    M. Kavatsyuk, these proceedings.Google Scholar
  5. 5.
    C. Plettner, Phys. Rev. C 66, 044319 (2002).CrossRefGoogle Scholar
  6. 6.
    M. Gierlik, Nucl. Phys. A 724, 313 (2003).CrossRefGoogle Scholar
  7. 7.
    M. Karny, Nucl. Phys. A 640, 3 (1998).CrossRefGoogle Scholar
  8. 8.
    M. Karny, Nucl. Phys. A 690, 367 (2001).CrossRefGoogle Scholar
  9. 9.
    M. La Commara, Nucl. Phys. A 708, 161 (2002).Google Scholar
  10. 10.
    L. Batist, Nucl. Phys. A 720, 245 (2003).CrossRefGoogle Scholar
  11. 11.
    Z. Hu, Phys. Rev. C 60, 024315 (1999).CrossRefGoogle Scholar
  12. 12.
    Z. Hu, Phys. Rev. C 62, 064315 (2000).CrossRefGoogle Scholar
  13. 13.
    L. Batist, Z. Phys. A 351, 149 (1995).CrossRefGoogle Scholar
  14. 14.
    R. Kirchner, Nucl. Instrum. Methods Phys. Res. B 204, 179 (2003).CrossRefGoogle Scholar
  15. 15.
    M. Karny, Nucl. Instrum. Methods Phys. Res. B 126, 411 (1997).CrossRefGoogle Scholar
  16. 16.
    A. Stolz, PhD Thesis, Universität München, 2001.Google Scholar
  17. 17.
    A. Stolz, AIP Conf. Proc. 638, 259 (2002).CrossRefGoogle Scholar
  18. 18.
    D. Sohler, Nucl. Phys. A 708, 181 (2002).CrossRefGoogle Scholar
  19. 19.
    B.A. Brown, K. Rykaczewski, Phys. Rev. C 50, R2270 (1994).Google Scholar
  20. 20.
    B. Singh, Nucl. Data Sheets 81, 1 (1997).CrossRefGoogle Scholar
  21. 21.
    R. Schubart, Z. Phys. A 352, 373 (1995).CrossRefGoogle Scholar
  22. 22.
    R. Kirchner, private communication.Google Scholar
  23. 23.
    R. Schneider, PhD Thesis, Universität München, 1996.Google Scholar
  24. 24.
    O. Kavatsyuk, submitted to Eur. Phys. J. A.Google Scholar
  25. 25.
    M. Chartier, Phys. Rev. Lett. 77, 2400 (1996).CrossRefPubMedGoogle Scholar
  26. 26.
    D.J. Dean, Phys. Lett. B 367, 17 (1996).CrossRefGoogle Scholar
  27. 27.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • M. Karny
    • 1
  • L. Batist
    • 2
  • A. Banu
    • 3
  • F. Becker
    • 3
  • A. Blazhev
    • 3
    • 4
  • K. Burkard
    • 3
  • W. Brüchle
    • 3
  • J. Döring
    • 3
  • T. Faestermann
    • 5
  • M. Górska
    • 3
  • H. Grawe
    • 3
  • Z. Janas
    • 1
  • A. Jungclaus
    • 6
  • M. Kavatsyuk
    • 3
    • 7
  • O. Kavatsyuk
    • 3
    • 7
  • R. Kirchner
    • 3
  • M. La Commara
    • 8
  • S. Mandal
    • 3
  • C. Mazzocchi
    • 3
  • K. Miernik
    • 1
  • I. Mukha
    • 3
  • S. Muralithar
    • 3
    • 9
  • C. Plettner
    • 3
  • A. Płochocki
    • 1
  • E. Roeckl
    • 3
  • M. Romoli
    • 8
  • K. Rykaczewski
    • 10
  • M. Schädel
    • 3
  • K. Schmidt
    • 11
  • R. Schwengner
    • 12
  • J. Żylicz
    • 1
  1. 1.Institute of Experimental PhysicsUniversity of WarsawWarsawPoland
  2. 2.St. Petersburg Nuclear Physics InstituteSt. PetersburgRussia
  3. 3.Gesellschaft für SchwerionenforschungDarmstadtGermany
  4. 4.University of SofiaSofiaBulgaria
  5. 5.Technische Universität MünchenMünchenGermany
  6. 6.Departamento de Fisica TeóricaUniversidad Autonoma de MadridMadridSpain
  7. 7.Taras Shevchenko Kiev National UniversityKievUkraine
  8. 8.Dipartimento Scienze FisicheUniversità “Federico II” and INFN NapoliNapoliItaly
  9. 9.Nuclear Science CenterNew DelhiIndia
  10. 10.Oak Ridge National LaboratoryOak RidgeUSA
  11. 11.Continental Teves AG & Co.Frankfurt am MainGermany
  12. 12.Forschungszentrum RossendorfDresdenGermany

Personalised recommendations