Advertisement

Recent high-precision mass measurements with the Penning trap spectrometer ISOLTRAP

  • F. Herfurth
  • G. Audi
  • D. Beck
  • K. Blaum
  • G. Bollen
  • P. Delahaye
  • S. George
  • C. Guénaut
  • A. Herlert
  • A. Kellerbauer
  • H. -J. Kluge
  • D. Lunney
  • M. Mukherjee
  • S. Rahaman
  • S. Schwarz
  • L. Schweikhard
  • C. Weber
  • C. Yazidjian
ENAM 2004

Abstract.

The Penning trap mass spectrometer ISOLTRAP has to date been used for the determination of close to 300 masses of radionuclides. A relative mass uncertainty of 10-8 can now be reached. Recent highlights were measurements of rp-process nuclides as for instance 72-74Kr or superallowed β emitters like 22Mg, 74Rb and 34Ar. The heaviest nuclides measured so far with ISOLTRAP are neutron-rich radium and francium isotopes. An overview of ISOLTRAP mass measurements and details about the recent experiment on 229-232Ra and 230Fr are presented.

PACS.

21.10.Dr Binding energies and masses 82.80.Qx Ion cyclotron resonance mass spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Lunney, J.M. Pearson, C. Thibault, Rev. Mod. Phys. 75, 1021 (2003).CrossRefGoogle Scholar
  2. 2.
    G. Bollen, Phys. Rev. C 46, R2140 (1992).Google Scholar
  3. 3.
    J. Van Roosbroeck, Phys. Rev. Lett. 92, 112501 (2004).CrossRefPubMedGoogle Scholar
  4. 4.
    S. Schwarz, Nucl. Phys. A 693, 533 (2001).CrossRefGoogle Scholar
  5. 5.
    G. Wallerstein, Rev. Mod. Phys. 69, 995 (2002).CrossRefGoogle Scholar
  6. 6.
    K.L. Kratz, Hyperfine Interact. 129, 185 (2000).CrossRefGoogle Scholar
  7. 7.
    H. Schatz, Phys. Rep. 294, 167 (1998).CrossRefGoogle Scholar
  8. 8.
    D. Rodríguez, Phys. Rev. Lett. 93, 161104 (2004).CrossRefPubMedGoogle Scholar
  9. 9.
    J.C. Hardy, I.S. Towner, Hyperfine Interact. 132, 115 (2001).CrossRefGoogle Scholar
  10. 10.
    I.S. Towner, J.C. Hardy, J. Phys. G 29, 197 (2003).CrossRefGoogle Scholar
  11. 11.
    A. Kellerbauer, Phys. Rev. Lett. 93, 072502 (2004).CrossRefPubMedGoogle Scholar
  12. 12.
    M. Mukherjee, Phys. Rev. Lett. 93, 150801 (2004).CrossRefPubMedGoogle Scholar
  13. 13.
    F. Herfurth, Eur. Phys. J. A 15, 17 (2002).Google Scholar
  14. 14.
    A. Kellerbauer, Eur. Phys. J. D 22, 53 (2003).Google Scholar
  15. 15.
    K. Blaum, J. Phys. B 36, 921 (2003).Google Scholar
  16. 16.
    E. Kugler, Hyperfine Interact. 129, 23 (2000).CrossRefGoogle Scholar
  17. 17.
    F. Herfurth, Nucl. Instrum. Methods A 469, 254 (2001).Google Scholar
  18. 18.
    H. Raimbault-Hartmann, Nucl. Instrum. Methods B 126, 378 (1997).CrossRefGoogle Scholar
  19. 19.
    G. Bollen, Nucl. Instrum. Methods A 368, 675 (1996).Google Scholar
  20. 20.
    K. Blaum, Europhys. Lett. 67, 586 (2004).CrossRefGoogle Scholar
  21. 21.
    G. Bollen, Hyperfine. Interact. 38, 793 (1987).Google Scholar
  22. 22.
    H. Stolzenberg, Phys. Rev. Lett. 65, 3104 (1990).CrossRefPubMedGoogle Scholar
  23. 23.
    K. Blaum, Nucl. Phys. A 746, 305 (2004).CrossRefGoogle Scholar
  24. 24.
    F. Herfurth, Phys. Rev. Lett. 87, 142501 (2001).CrossRefPubMedGoogle Scholar
  25. 25.
    K. Blaum, Phys. Rev. Lett. 91, 260801 (2003).CrossRefPubMedGoogle Scholar
  26. 26.
    C. Guénaut, these proceedings.Google Scholar
  27. 27.
    C. Guénaut, to be published.Google Scholar
  28. 28.
    T. Otto, Nucl. Phys. A 567, 281 (1994).CrossRefGoogle Scholar
  29. 29.
    H. Raimbault-Hartmann, Nucl. Phys. A 706, 3 (2002).CrossRefGoogle Scholar
  30. 30.
    G. Sikler, Proceedings of the 3rd International Conference on Exotic Nuclei and Masses, Hämeenlinna, Finland 2001, edited by J. Äystö (Springer Verlag, 2002), mass values to be published, p. 48.Google Scholar
  31. 31.
    J. Dilling, Eur. Phys. J. A 22, 163 (2004).CrossRefGoogle Scholar
  32. 32.
    F. Ames, Nucl. Phys. A 651, 3 (1999).CrossRefGoogle Scholar
  33. 33.
    C. Weber, to be published.Google Scholar
  34. 34.
    D. Beck, Eur. Phys. J. A 8, 307 (2000).CrossRefGoogle Scholar
  35. 35.
    G. Bollen, Hyperfine Interact. 132, 215 (2001).CrossRefGoogle Scholar
  36. 36.
    G. Bollen, J. Mod. Optics 39, 257 (1992).Google Scholar
  37. 37.
    F. Herfurth, Phys. Rev. Lett. 87, 142501 (2001).CrossRefPubMedGoogle Scholar
  38. 38.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).CrossRefGoogle Scholar
  39. 39.
    J.C. Hardy, Phys. Rev. Lett. 91, 082501 (2003).CrossRefPubMedGoogle Scholar
  40. 40.
    I.S. Towner, J.C. Hardy, Phys. Rev. C 66, 035501 (2002).CrossRefGoogle Scholar
  41. 41.
    J.C. Hardy, these proceedings.Google Scholar
  42. 42.
    P.J. Mohr, B.N. Taylor, Rev. Mod. Phys. 72, 351 (2000), 1998 CODATA values.CrossRefGoogle Scholar
  43. 43.
    A. Herlert, New. J. Phys. 7, 44 (2005).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • F. Herfurth
    • 1
  • G. Audi
    • 2
  • D. Beck
    • 1
  • K. Blaum
    • 1
    • 3
  • G. Bollen
    • 4
  • P. Delahaye
    • 5
  • S. George
    • 3
  • C. Guénaut
    • 2
  • A. Herlert
    • 6
  • A. Kellerbauer
    • 5
  • H. -J. Kluge
    • 1
  • D. Lunney
    • 2
  • M. Mukherjee
    • 1
  • S. Rahaman
    • 1
  • S. Schwarz
    • 4
  • L. Schweikhard
    • 6
  • C. Weber
    • 1
    • 3
  • C. Yazidjian
    • 1
  1. 1.GSIDarmstadtGermany
  2. 2.CSNSM-IN2P3-CNRSOrsay-CampusFrance
  3. 3.Institute of PhysicsJohannes Gutenberg-UniversityMainzGermany
  4. 4.NSCLMichigan State UniversityEast LansingUSA
  5. 5.CERNGenevaSwitzerland
  6. 6.Institute of PhysicsErnst-Moritz-Arndt-UniversityGreifswaldGermany

Personalised recommendations