Advertisement

Simulation of a recoil mass spectrometer for measurement of differential quasi-elastic scattering cross sections

A semi-microscopic Monte Carlo code
  • Rohan Biswas
  • S. NathEmail author
Special Article - New Tools and Techniques
  • 55 Downloads

Abstract

We report development of a semi-microscopic Monte Carlo code to calculate the transmission efficiency of a recoil mass spectrometer for quasi-elastic scattering. Realistic distributions of angle, energy and charge state of the forward-moving target-like ions are generated event by event. Particle trajectories are calculated employing first-order ion-optical transfer matrices. We present results for two test reactions, viz.\(^{16}\)O+\(^{116}\)Sn and \(^{58}\)Ni+\(^{116}\)Sn assuming Rutherford scattering at projectile energies near the Coulomb barrier. This work has an important application in determining barrier distributions from quasi-elastic back-scattering measurements employing recoil mass spectrometers. The code can also be utilized to simulate multi-nucleon transfer reactions and adapted for other similar recoil separators because of its modular structure.

Notes

Acknowledgements

One of the authors (R. B.) acknowledges Council of Scientific and Industrial Research (CSIR), New Delhi for financial support via grant no. CSIR/09/760(0030)/2017-EMR-I. The authors are thankful to Dr. G. O. Rodrigues for useful discussion on ion-optical calculation.

References

  1. 1.
    M. Thomas, Cormier, Recoil mass spectrometers in low-energy nuclear physics. Ann. Rev. Nucl. Part. Sci. 37, 537–565 (1987)CrossRefGoogle Scholar
  2. 2.
    N. Cary, Davids, Recoil separators. Nucl. Instrum Methods B 204, 124–128 (2003)CrossRefGoogle Scholar
  3. 3.
    M. Leino, Gas-filled separators - an overview. Nucl. Instrum Methods B 204, 129–137 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    E. Christoph, Düllmann, physical separators for the heaviest elements. Nucl. Instrum Methods B 266, 4123–4130 (2008)CrossRefGoogle Scholar
  5. 5.
    Chris Ruiz, Uwe Greife, Ulrike Hager, Recoil separators for radiative capture using radioactive ion beams. Eur. Phys. J. A 50, 99 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    P. Spolaore, J.D. Larson, C. Signorini, S. Beghini, Z. Xi-Kai, S. Hou-Zhi, A recoil mass spectrometer for the XTU tandem at LNL. Nucl. Instrum. Methods A 238, 381–392 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    C. Signorini, S. Beghini, A. Dal Bello, G. Montagnoli, F. Scarlassara, G.F. Segato, F. Soramel, D. Ackermann, L. Corradi, A. Facco, H. Moreno, L. Müller, D.R. Napoli, G.F. Prete, Performance of the LNL recoil mass spectrometer. Nucl. Instrum Methods A 339, 531–542 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    P. Spolaore, D. Ackermann, P. Bednarczyk, G. De Angelis, D. Napoli, C. Rossi Alvarez, D. Bazzacco, R. Burch, L. Müller, G.F. Segato, F. Scarlassara, Coupling of the recoil mass spectrometer CAMEL to the \(\gamma \)-ray spectrometer GASP. Nucl. Instrum Methods A 359, 500–505 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    C.N. Davids, J.D. Larson, The argonne fragment mass analyzer. Nucl. Instrum. Methods B 40–41, 1224–1228 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    C.N. Davids, B.B. Back, K. Bindra, D.J. Henderson, W. Kutschera, T. Lauritsen, Y. Nagame, P. Sugathan, A.V. Ramayya, W.B. Walters, Startup of the fragment mass analyzer at ATLAS. Nucl. Instrum. Methods B 70, 358–365 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    B.B. Back, D.J. Blumenthal, C.N. Davids, D.J. Henderson, R.H. Hermann, C.L. Jiang, H.T. Penttilä, A.H. Wuosmaa, Transport efficiency of the Argonne fragment mass analyzer. Nucl. Instrum. Methods A 379, 206–211 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    T.M. Cormier, J.D. Cole, J.H. Hamilton, A.V. Ramaya, A large-solid-angle high-resolution recoil mass spectrometer optimized for use with Gammasphere. Nucl. Instrum Methods A 297, 199–212 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    J.D. Cole, T.M. Cormier, J.H. Hamilton, A.V. Ramayya, A recoil mass spectrometer for HHIRF Nucl. Instrum Methods B 70, 343–357 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    C.J. Gross, T.N. Ginter, D. Shapira, W.T. Milner, J.W. McConnell, A.N. James, J.W. Johnson, J. Mas, P.F. Mantica, R.L. Auble, J.J. Das, J.L. Blankenship, J.H. Hamilton, R.L. Robinson, Y.A. Akovali, C. Baktash, J.C. Batchelder, C.R. Bingham, M.J. Brinkman, H.K. Carter, R.A. Cunningham, T. Davinson, J.D. Fox, A. Galindo-Uribarri, R. Grzywacz, J.F. Liang, B.D. MacDonald, J. MacKenzie, S.D. Paul, A. Piechaczek, D.C. Radford, A.V. Ramayya, W. Reviol, D. Rudolph, K. Rykaczewski, K.S. Toth, W. Weintraub, C. Williams, P.J. Woods, C.-H. Yu, E.F. Zganjar, Performance of the Recoil mass spectrometer and its detector systems at the holifield radioactive Ion beam facility. Nucl. Instrum Methods A 450, 12–29 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    A.K. Sinha, N. Madhavan, J.J. Das, P. Sugathan, D.O. Kataria, A.P. Patro, G.K. Mehta, Heavy ion reaction analyzer (HIRA): a recoil mass separator facility at NSC. Nucl. Instrum. Methods A 339, 543–549 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    D.O. Kataria, J.J. Das, N. Madhavan, P. Sugathan, A.K. Sinha, G. Dayanand, M.C. Radhakrishna, A.M. Vinodkumar, K.M. Varier, Mahendrajit Singh, N.V.S.V. Prasad, A modular focal plane detector system for the heavy ion reaction analyzer at NSC, New Delhi. Nucl. Instrum. Methods A 372, 311–317 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    S. Nath, A Monte Carlo code to calculate transmission efficiency of HIRA. Nucl. Instrum. Methods A 576, 403–410 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    H. Ikezoe, Y. Nagame, T. Ikuta, S. Hamada, I. Nishinaka, T. Ohtsuki, JAERI recoil mass separator. Nucl. Instrum. Methods A 376, 420–427 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    H. Ikezoe, T. Ikuta, S. Mitsuoka, S. Hamada, Y. Nagame, I. Nishinaka, Y. Tsukada, Y. Oura, T. Ohtsuki, The feature of the JAERI recoil mass separator. Nucl. Instrum. Methods B 126, 340–343 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    T. Kuzumaki, H. Ikezoe, S. Mitsuoka, T. Ikuta, S. Hamada, Y. Nagame, I. Nishinaka, T. Ohtsuki, O. Hashimoto, Transport efficiency of JAERI recoil mass separator. Nucl. Instrum. Methods A 437, 107–113 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    Barry Davids, Cary N. Davids, EMMA: A recoil mass spectrometer for ISAC-II at TRIUMF Nucl. Instrum. Methods A 544, 565–576 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    B. Davids, M. Williams, N.E. Esker, M. Alcorta, D. Connolly, B.R. Fulton, K. Hudson, N. Khan, O.S. Kirsebom, J. Lighthall, P. Machule, Initial operation of the recoil mass spectrometer EMMA at the ISAC-II facility of TRIUMF. Nucl. Instrum. Methods A 930, 191–195 (2019)ADSCrossRefGoogle Scholar
  23. 23.
    T.M. Cormier, P.M. Stwertka, A nuclear reaction product mass spectrometer. Nucl. Instrum. Methods 184, 423–430 (1981)ADSCrossRefGoogle Scholar
  24. 24.
    T.M. Cormier, M.G. Herman, B.S. Lin, P.M. Stwertka, Performance of a recoil mass spectrometer. Nucl. Instrum. Methods 212, 185–193 (1983)CrossRefGoogle Scholar
  25. 25.
    S.Mandal Khushboo, S. Nath, N. Madhavan, J. Gehlot, A. Jhingan, Neeraj Kumar, Tathagata Banerjee, Gurpreet Kaur, K. Rojeeta Devi, A. Banerjee, Neelam T. Varughese, Davinder Siwal, R. Garg, Ish Mukul, M‘. Saxena, S. Verma, S. Kumar, B.R. Behera, P. Verma, Relationship between and effect of inelastic excitations and transfer channels on sub-barrier fusion enhancement. Phys. Rev. C 96, 014614 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    B.B. Back, H. Esbensen, C.L. Jiang, K.E. Rehm, Recent developments in heavy-ion fusion reactions. Rev. Mod. Phys. 86, 317–360 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    N. Rowley, G.R. Satchler, P.H. Stelson, On the distribution of barriers interpretation of heavy-ion fusion. Phys. Lett. B 254, 25–29 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    H. Timmers, J.R. Leigh, M. Dasgupta, D.J. Hinde, R.C. Lemmon, J.C. Mein, C.R. Morton, J.O. Newton, N. Rowley, Probing fusion barrier distributions with quasi-elastic scattering. Nucl. Phys. A 584, 190–204 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    M.V. Andres, N. Rowley, M.A. Nagarajan, Effect of deformation on the elastic and quasielastic scattering of heavy ions near the Coulomb barrier. Phys. Lett. B 202, 292–295 (1988)ADSCrossRefGoogle Scholar
  30. 30.
    A.T. Kruppa, P. Romain, M.A. Nagarajan, N. Rowley, Effect of multiphonon coupling on heavy-ion fusion. Nucl. Phys. A 560, 845–862 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    K. Washiyama, K. Hagino, M. Dasgupta, Probing surface diffuseness of nucleus-nucleus potential with quasielastic scattering at deep sub-barrier energies. Phys. Rev. C 73, 034607 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    H.M. Jia, C.J. Lin, F. Yang, X.X. Xu, H.Q. Zhang, Z.H. Liu, Z.D. Wu, L. Yang, N.R. Ma, P.F. Bao, L.J. Sun, Extracting the hexadecapole deformation from backward quasi-elastic scattering. Phys. Rev. C 90, 031601(R) (2014)ADSCrossRefGoogle Scholar
  33. 33.
    R.R. Betts, P.M. Evans, C.N. Pass, N. Poffé, A.E. Smith, L. Stuttgé, J.S. Lilley, D.W. Banes, K.A. Connell, J. Simpson, J.R.H. Smith, A.N. James, B.R. Fulton, Measurement of sub-barrier transfer reactions for \(^{58}\)Ni+Sn using a recoil mass separator. Phys. Rev. Lett. 59, 978 (1987)ADSCrossRefGoogle Scholar
  34. 34.
    S. Nath, A Monte Carlo C-code for calculating transmission efficiency of recoil separators and viewing residue trajectories. Comput. Phys. Commun. 179, 492–500 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    S. Nath, TERS v2.0: an improved version of TERS. Comput. Phys. Commun. 180, 2392–2393 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Sunil Kalkal, S. Mandal, N. Madhavan, A. Jhingan, E. Prasad, Rohit Sandal, S. Nath, J. Gehlot, Ritika Garg, Gayatri Mohanto, Mansi Saxena, Savi Goyal, S. Verma, B.R. Behera, Suresh Kumar, U.D. Pramanik, A.K. Sinha, R. Singh, Multinucleon transfer reactions for the \(^{28}\text{ Si }+^{90,94}\text{ Zr }\) systems in the region below and near the Coulomb barrier. Phys. Rev. C 83, 054607 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    J.J. Das, P. Sugathan, N. Madhavan, P.V. Madhusudhana Rao, A. Jhingan, T. Varughese, S. Barua, S. Nath, A.K. Sinha, B. Kumar, J. Zacharias, Production of light radioactive ion beams (RIB) using inverse kinematics. Nucl. Instrum. Methods B 241, 953–958 (2005)ADSCrossRefGoogle Scholar
  38. 38.

Copyright information

© Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Nuclear Physics GroupInter-University Accelerator CentreNew DelhiIndia

Personalised recommendations