Advertisement

Electromagnetic counterparts of black hole–neutron star mergers: dependence on the neutron star properties

  • 17 Accesses

Abstract

Detections of gravitational waves (GWs) may soon uncover the signal from the coalescence of a black hole–neutron star (BHNS) binary, which is expected to be accompanied by an electromagnetic (EM) signal. In this paper, we present a composite semi-analytical model to predict the properties of the expected EM counterpart from BHNS mergers, focusing on the kilonova emission and on the gamma-ray burst afterglow. Four main parameters rule the properties of the EM emission: the NS mass \(M_{{\mathrm {NS}}}\), its tidal deformability \(\varLambda _{{\mathrm {NS}}}\), the BH mass and spin. Only for certain combinations of these parameters an EM counterpart is produced. Here we explore the parameter space, and construct light curves, analyzing the dependence of the EM emission on the NS mass and tidal deformability. Exploring the NS parameter space limiting to \(M_{{\mathrm {NS}}}-\varLambda _{{\mathrm {NS}}}\) pairs described by a physically motivated equations of state (EoS), we find that the brightest EM counterparts are produced in binaries with low-mass NSs (fixing the BH properties and the EoS). Using constraints on the NS EoS from GW170817, our modeling shows that the emission falls in a narrow range of absolute magnitudes. Within the range of explored parameters, light curves and peak times are not dissimilar to those from NSNS mergers, except in the B band. The lack of an hyper/supra-massive NS in BHNS coalescences causes a dimming of the blue kilonova emission in the absence of the neutrino interaction with the ejecta.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The figures show all the relevant information. For any request please contact the author.]

Notes

  1. 1.

    LVC is the acronym of the LIGO Scientific Collaboration and Virgo Collaboration.

  2. 2.

    A much higher, albeit uncertain, mass of \(2.7\pm 0.21\,{\mathrm{M}}_\odot \) is observed in the recycled millisecond pulsar J1748-2021B [16]. However, due to uncertainties in the assumed binary orbital inclination angle, for J1748-2021B the authors indicate that there is \(1\%\) probability that the NS mass is below \(2~\,{\mathrm{M}}_\odot \).

  3. 3.

    Hereafter, the term spin refers to the dimensionless spin parameter \(\chi _{{\mathrm {BH}}}=cJ/GM_{{\mathrm {BH}}}^2\), where J is the angular momentum of the BH.

  4. 4.

    In this work we assume the NS spin to be negligible. Indeed the time delay between the NS formation and the binary merger is long enough so that the NS spin (initially large) decreases through dipole emission. Furthermore, the absence of matter accretion onto the NS avoids the spin-up through recycling. Thus the NS spin is expected to be low before tidal locking; it remains negligible because the GW driven inspiral time is much shorter than the timescale for tidal spin-up [22, 23].

  5. 5.

    This may be due to the different dependence of the disc and dynamical mass of the ejecta on the NS compactness (Eqs. (2) and (3)), but we caution again that the two fitting formulas are based on different datasets, and that the one from [70] is not calibrated in this part of the parameter space.

References

  1. 1.

    LVC, B.P. Abbott, R. Abbott, T.D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, R.X. Adhikari, et al., arXiv e-prints (2018). arXiv:1811.12940

  2. 2.

    B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, V.B. Adya et al., LIGO Scientific Collaboration and Virgo Collaboration. Phys. Rev. Lett. 119, 161101 (2017)

  3. 3.

    J. Abadie, B.P. Abbott, R. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams, R. Adhikari, P. Ajith, B. Allen et al., Class. Quant. Grav. 27, 173001 (2010). arXiv:1003.2480

  4. 4.

    J. Clark, H. Evans, S. Fairhurst, I.W. Harry, E. Macdonald, D. Macleod, P.J. Sutton, A.R. Williamson, ApJ 809, 53 (2015). arXiv:1409.8149

  5. 5.

    M. Dominik, E. Berti, R. O’Shaughnessy, I. Mandel, K. Belczynski, C. Fryer, D.E. Holz, T. Bulik, F. Pannarale, ApJ 806, 263 (2015). arXiv:1405.7016

  6. 6.

    M. Mapelli, N. Giacobbo, MNRAS 479, 4391 (2018). arXiv:1806.04866

  7. 7.

    N. Giacobbo, M. Mapelli, MNRAS 480, 2011 (2018). arXiv:1806.00001

  8. 8.

    LVC, B.P. Abbott, R. Abbott, T.D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, R.X.E.A. Adhikari, arXiv e-prints arXiv:1811.12907 (2018). arXiv:1811.12907

  9. 9.

    C. Barbieri, O.S. Salafia, A. Perego, M. Colpi, G. Ghirlanda, arXiv e-prints arXiv:1903.04543 (2019)

  10. 10.

    J. Antoniadis, P.C.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch, M.H. van Kerkwijk, M. Kramer, C. Bassa, V.S. Dhillon, T. Driebe, Science 340, 448 (2013). arXiv:1304.6875

  11. 11.

    F. Özel, D. Psaltis, R. Narayan, A.S. Villarreal, ApJ 757, 55 (2012). arXiv:1201.1006

  12. 12.

    F. Özel, P. Freire, Annu. Rev. Astronomy Astrophys. 54, 401 (2016). arXiv:1603.02698

  13. 13.

    J. Antoniadis, T.M. Tauris, F. Ozel, E. Barr, D.J. Champion, P.C.C. Freire, arXiv e-prints, (2016). arXiv:1605.01665

  14. 14.

    T.M. Tauris, Mem. S.A.I. 87, 517 (2016). arXiv:1606.05117

  15. 15.

    T.M. Tauris, M. Kramer, P.C.C. Freire, N. Wex, H.T. Janka, N. Langer, P. Podsiadlowski, E. Bozzo, S. Chaty, M.U. Kruckow et al., ApJ 846, 170 (2017). arXiv:1706.09438

  16. 16.

    P.C.C. Freire, S.M. Ransom, S. Begin, I.H. Stairs, J.W.T. Hessels, L.H. Frey, F. Camilo (2007). arXiv:0711.0925

  17. 17.

    H. T. Cromartie, E. Fonseca, S. M. Ransom, P. B. Demorest, Z. Arzoumanian, H. Blumer, P. R. Brook, M. E. DeCesar, T. Dolch, J. A. Ellis, . D. Ferdman, E. C. Ferrara, N. Garver-Daniels, P. A.Gentile, M. L. Jones, M. T. Lam, D. R. Lorimer, R. S. Lynch, M. A.M cLaughlin, C. Ng, D. J. Nice, T. T. Pennucci, R. Spiewak, I. H.Stairs, K. Stovall, J. K. Swiggum, W. W. Zhu, Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron. (2019). https://doi.org/10.1038/s41550-019-0880-2

  18. 18.

    B. Margalit, B.D. Metzger, ApJ 850, L19 (2017). arXiv:1710.05938

  19. 19.

    F. Özel, D. Psaltis, R. Narayan, J.E. McClintock, ApJ 725, 1918 (2010). arXiv:1006.2834

  20. 20.

    M. Shibata, K. Taniguchi, Living Rev. Relat. 14, 6 (2011)

  21. 21.

    K. Belczynski, J. Klencki, G. Meynet, C.L. Fryer, D.A. Brown, M. Chruslinska, W. Gladysz, R. O’Shaughnessy, T. Bulik, E. Berti et al., arXiv e-prints, (2017). arXiv:1706.07053

  22. 22.

    C.S. Kochanek, ApJ 398, 234 (1992)

  23. 23.

    L. Bildsten, C. Cutler, ApJ 400, 175 (1992)

  24. 24.

    B. Farr, D.E. Holz, W.M. Farr, Astrophys. J. 854, L9 (2018)

  25. 25.

    C. Georgy, A. Granada, S. Ekström, G. Meynet, R.I. Anderson, A. Wyttenbach, P. Eggenberger, A. Maeder, Astronomy Astrophys. 566, A21 (2014)

  26. 26.

    M.A. Sedda, M. Benacquista, MNRAS 482, 2991 (2019). arXiv:1806.01285

  27. 27.

    I.D. Novikov, K.S. Thorne, Astrophysics of black holes., in Black Holes (Les Astres Occlus), edited by C. Dewitt, B.S. Dewitt (1973), pp. 343–450

  28. 28.

    J.E. McClintock, R. Narayan, J.F. Steiner, Space Sci. Rev. 183, 295 (2014). arXiv:1303.1583

  29. 29.

    K. Belczynski, T. Bulik, C. Bailyn, ApJl 742, L2 (2011). arXiv:1107.4106

  30. 30.

    K. Belczynski, T. Bulik, C.L. Fryer, arXiv e-prints, (2012). arXiv:1208.2422

  31. 31.

    P. Marchant, N. Langer, P. Podsiadlowski, T.M. Tauris, S. de Mink, I. Mandel, T.J. Moriya, A&A 604, A55 (2017). arXiv:1705.04734

  32. 32.

    W. Farr, N. Sravan, A. Cantrell, L. Kreidberg, C. Bailyn, I. Mandel, V. Kalogera, The Mass Distribution of Stellar-Mass Black Holes, in APS April Meeting Abstracts (2011), Vol. 2011, p. H11.002

  33. 33.

    K. Belczynski, G. Wiktorowicz, C.L. Fryer, D.E. Holz, V. Kalogera, Astrophys. J. 757, 91 (2012)

  34. 34.

    C.L. Fryer, K. Belczynski, G. Wiktorowicz, M. Dominik, V. Kalogera, D.E. Holz, ApJ 749, 91 (2012). arXiv:1110.1726

  35. 35.

    M. Dominik, K. Belczynski, C. Fryer, D.E. Holz, E. Berti, T. Bulik, I. Mandel, R. O’Shaughnessy, ApJ 759, 52 (2012). arXiv:1202.4901

  36. 36.

    N. Giacobbo, M. Mapelli, M. Spera, MNRAS 474, 2959 (2018). arXiv:1711.03556

  37. 37.

    F. Foucart, Phys. Rev. D 86, 124007 (2012). arXiv:1207.6304

  38. 38.

    K. Kyutoku, K. Ioka, H. Okawa, M. Shibata, K. Taniguchi, Phys. Rev. D 92, 044028 (2015). arXiv:1502.05402

  39. 39.

    K. Kawaguchi, K. Kyutoku, H. Nakano, H. Okawa, M. Shibata, K. Taniguchi, Phys. Rev. D 92, 024014 (2015). arXiv:1506.05473

  40. 40.

    F. Foucart, T. Hinderer, S. Nissanke, ArXiv e-prints, (2018). arXiv:1807.00011

  41. 41.

    M. Shibata, K. Kyutoku, T. Yamamoto, K. Taniguchi, Phys. Rev. D 79, 044030 (2009). arXiv:0902.0416

  42. 42.

    F. Foucart, M.B. Deaton, M.D. Duez, L.E. Kidder, I. MacDonald, C.D. Ott, H.P. Pfeiffer, M.A. Scheel, B. Szilagyi, S.A. Teukolsky, Phys. Rev. D 87, 084006 (2013). arXiv:1212.4810

  43. 43.

    F. Foucart, L. Buchman, M.D. Duez, M. Grudich, L.E. Kidder, I. MacDonald, A. Mroue, H.P. Pfeiffer, M.A. Scheel, B. Szilagyi, Phys. Rev. D 88, 064017 (2013). arXiv:1307.7685

  44. 44.

    F. Pannarale, E. Berti, K. Kyutoku, B.D. Lackey, M. Shibata, Phys. Rev. D 92, 081504 (2015). arXiv:1509.06209

  45. 45.

    F. Pannarale, E. Berti, K. Kyutoku, B.D. Lackey, M. Shibata, Phys. Rev. D 92, 084050 (2015). arXiv:1509.00512

  46. 46.

    T. Hinderer, A. Taracchini, F. Foucart, A. Buonanno, J. Steinhoff, M. Duez, L.E. Kidder, H.P. Pfeiffer, M.A. Scheel, B. Szilagyi et al., Phys. Rev. Lett. 116, 181101 (2016). arXiv:1602.00599

  47. 47.

    P. Kumar, M. Pürrer, H.P. Pfeiffer, Phys. Rev. D 95, 044039 (2017). arXiv:1610.06155

  48. 48.

    T. Di Matteo, R. Perna, R. Narayan, ApJ 579, 706 (2002). arXiv:astro-ph/0207319

  49. 49.

    W.X. Chen, A.M. Beloborodov, ApJ 657, 383 (2007). arXiv:astro-ph/0607145

  50. 50.

    A. Janiuk, P. Mioduszewski, M. Moscibrodzka, ApJ 776, 105 (2013). arXiv:1308.4823

  51. 51.

    B.P. Abbott et al. (GROND, SALT Group, OzGrav, DFN, INTEGRAL, Virgo, Insight-Hxmt, MAXI Team, Fermi-LAT, J-GEM, RATIR, IceCube, CAASTRO, LWA, ePESSTO, GRAWITA, RIMAS, SKA South Africa/MeerKAT, H.E.S.S., 1M2H Team, IKI-GW Follow-up, Fermi GBM, Pi of Sky, DWF (Deeper Wider Faster Program), Dark Energy Survey, MASTER, AstroSat Cadmium Zinc Telluride Imager Team, Swift, Pierre Auger, ASKAP, VINROUGE, JAGWAR, Chandra Team at McGill University, TTU-NRAO, GROWTH, AGILE Team, MWA, ATCA, AST3, TOROS, Pan-STARRS, NuSTAR, ATLAS Telescopes, BOOTES, CaltechNRAO, LIGO Scientific, High Time Resolution Universe Survey, Nordic Optical Telescope, Las Cumbres Observatory Group, TZAC Consortium, LOFAR, IPN, DLT40, Texas Tech University, HAWC, ANTARES, KU, Dark Energy Camera GW-EM, CALET, Euro VLBI Team, ALMA), Astrophys. J. 848, L12 (2017). arXiv:1710.05833

  52. 52.

    D. Eichler, M. Livio, T. Piran, D.N. Schramm, Nature 340, 126 (1989)

  53. 53.

    R. Narayan, B. Paczynski, T. Piran, ApJl 395, L83 (1992). arXiv:astro-ph/9204001

  54. 54.

    J.M. Lattimer, D.N. Schramm, ApJl 192, L145 (1974)

  55. 55.

    L.X. Li, B. Paczyński, ApJl 507, L59 (1998). arXiv:astro-ph/9807272

  56. 56.

    B.D. Metzger, Living Rev. Relat. 20, 3 (2017)

  57. 57.

    B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, V.B. Adya et al., LIGO Scientific Collaboration and Virgo Collaboration. Phys. Rev. X 9, 011001 (2019)

  58. 58.

    C.A. Raithel, F. Özel, D. Psaltis, ApJl 857, L23 (2018). arXiv:1803.07687

  59. 59.

    S. De, D. Finstad, J.M. Lattimer, D.A. Brown, E. Berger, C.M. Biwer, Phys. Rev. Lett. 121, 091102 (2018). arXiv:1804.08583

  60. 60.

    D. Radice, A. Perego, F. Zappa, S. Bernuzzi, ApJ 852, L29 (2018). arXiv:1711.03647

  61. 61.

    R.D. Blandford, R.L. Znajek, MNRAS 179, 433 (1977)

  62. 62.

    A. Tchekhovskoy, R. Narayan, J.C. McKinney, ApJ 711, 50 (2010). arXiv:0911.2228

  63. 63.

    D.J. Price, S. Rosswog, Science 312, 719 (2006). arXiv:astro-ph/0603845

  64. 64.

    J. Zrake, A.I. MacFadyen, ApJ 769, L29 (2013). arXiv:1303.1450

  65. 65.

    B. Giacomazzo, J. Zrake, P.C. Duffell, A.I. MacFadyen, R. Perna, ApJ 809, 39 (2015). arXiv:1410.0013

  66. 66.

    V. Paschalidis, M. Ruiz, S.L. Shapiro, ApJl 806, L14 (2015). arXiv:1410.7392

  67. 67.

    S.L. Shapiro, Phys. Rev. D 95, 101303 (2017)

  68. 68.

    V. Paschalidis, Class. Quant. Gravity 34, 084002 (2017). arXiv:1611.01519

  69. 69.

    M. Ruiz, S.L. Shapiro, A. Tsokaros, ArXiv e-prints (2018). arXiv:1810.08618

  70. 70.

    K. Kawaguchi, K. Kyutoku, M. Shibata, M. Tanaka, ApJ 825, 52 (2016)

  71. 71.

    M. Tanaka, K. Hotokezaka, ApJ 775, 113 (2013). arXiv:1306.3742

  72. 72.

    M. Tanaka, K. Hotokezaka, K. Kyutoku, S. Wanajo, K. Kiuchi, Y. Sekiguchi, M. Shibata, ApJ 780, 31 (2014). arXiv:1310.2774

  73. 73.

    R. Fernández, F. Foucart, D. Kasen, J. Lippuner, D. Desai, L.F. Roberts, Class. Quantum Grav. 34, 154001 (2017). arXiv:1612.04829

  74. 74.

    T.B. Littenberg, B. Farr, S. Coughlin, V. Kalogera, D.E. Holz, Astrophys. J. 807, L24 (2015)

  75. 75.

    É.É. Flanagan, T. Hinderer, Phys. Rev. D 77, 021502 (2008). arXiv:0709.1915

  76. 76.

    O.S. Salafia, M. Colpi, M. Branchesi, E. Chassande-Mottin, G. Ghirlanda, G. Ghisellini, S.D. Vergani, ApJ 846, 62 (2017). arXiv:1704.05851

  77. 77.

    M.J. Rees, Nature 333, 523 (1988)

  78. 78.

    F. Foucart, M.D. Duez, L.E. Kidder, S.M. Nissanke, H.P. Pfeiffer, M.A. Scheel, Phys. Rev. D 99, 103025 (2019). arXiv:1903.09166

  79. 79.

    K. Yagi, N. Yunes, Phys. Rep. 681, 1 (2017). arXiv:1608.02582

  80. 80.

    J.M. Lattimer, M. Prakash, ApJ 550, 426 (2001). arXiv:astro-ph/0002232

  81. 81.

    A.W. Steiner, M. Hempel, T. Fischer, ApJ 774, 17 (2013). arXiv:1207.2184

  82. 82.

    B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, V.B. Adya et al., The LIGO Scientific Collaboration and the Virgo Collaboration. Phys. Rev. Lett. 121, 161101 (2018)

  83. 83.

    D. Radice, A. Perego, K. Hotokezaka, S.A. Fromm, S. Bernuzzi, L.F. Roberts, ApJ 869, 130 (2018). arXiv:1809.11161

  84. 84.

    O. Just, A. Bauswein, R. Ardevol Pulpillo, S. Goriely, H.T. Janka, MNRAS 448, 541 (2015). arXiv:1406.2687

  85. 85.

    L. Dessart, C.D. Ott, A. Burrows, S. Rosswog, E. Livne, ApJ 690, 1681 (2009). arXiv:0806.4380

  86. 86.

    K. Kiuchi, Y. Sekiguchi, K. Kyutoku, M. Shibata, K. Taniguchi, T. Wada, Phys. Rev. D 92, 064034 (2015). arXiv:1506.06811

  87. 87.

    R. Fernández, B.D. Metzger, MNRAS 435, 502 (2013). arXiv:1304.6720

  88. 88.

    D. Radice, A. Perego, K. Hotokezaka, S. Bernuzzi, S.A. Fromm, L.F. Roberts, ApJl 869, L35 (2018). arXiv:1809.11163

  89. 89.

    A. Perego, D. Radice, S. Bernuzzi, ApJ 850, L37 (2017)

  90. 90.

    S. Rosswog, T. Piran, E. Nakar, MNRAS 430, 2585 (2013). arXiv:1204.6240

  91. 91.

    R.T. Wollaeger, O. Korobkin, C.J. Fontes, S.K. Rosswog, W.P. Even, C.L. Fryer, J. Sollerman, A.L. Hungerford, D.R. van Rossum, A.B. Wollaber, MNRAS 478, 3298 (2018). arXiv:1705.07084

  92. 92.

    D. Grossman, O. Korobkin, S. Rosswog, T. Piran, MNRAS 439, 757 (2014). arXiv:1307.2943

  93. 93.

    D. Martin, A. Perego, A. Arcones, F.K. Thielemann, O. Korobkin, S. Rosswog, ApJ 813, 2 (2015)

  94. 94.

    O. Korobkin, S. Rosswog, A. Arcones, C. Winteler, MNRAS 426, 1940 (2012). arXiv:1206.2379

  95. 95.

    J. Barnes, D. Kasen, ApJ 775, 18 (2013). arXiv:1303.5787

  96. 96.

    L.F. Roberts, J. Lippuner, M.D. Duez, J.A. Faber, F. Foucart, J. Lombardi, C. James, S. Ning, C.D. Ott, M. Ponce, MNRAS 464, 3907 (2017). arXiv:1601.07942

  97. 97.

    B.D. Metzger, R. Fernández, MNRAS 441, 3444 (2014). arXiv:1402.4803

  98. 98.

    S.S. Komissarov, MNRAS 326, L41 (2001)

  99. 99.

    F. Pannarale, Phys. Rev. D 88, 104025 (2013). arXiv:1208.5869

  100. 100.

    J.F. Hawley, C. Fendt, M. Hardcastle, E. Nokhrina, A. Tchekhovskoy, Space Sci. Rev. 191, 441 (2015)

  101. 101.

    P. D’Avanzo, R. Salvaterra, M.G. Bernardini, L. Nava, S. Campana, S. Covino, V. D’Elia, G. Ghirlanda, G. Ghisellini, A. Melandri et al., MNRAS 442, 2342 (2014). arXiv:1405.5131

  102. 102.

    W. Fong, E. Berger, R. Margutti, B.A. Zauderer, ApJ 815, 102 (2015). arXiv:1509.02922

  103. 103.

    O.S. Salafia, G. Ghirlanda, S. Ascenzi, G. Ghisellini, arXiv e-prints, (2019). arXiv:1905.01190

  104. 104.

    O.S. Salafia, G. Ghisellini, A. Pescalli, G. Ghirlanda, F. Nappo, MNRAS 450, 3549 (2015). arXiv:1502.06608

  105. 105.

    L. Sironi, A. Spitkovsky, J. Arons, ApJ 771, 54 (2013). arXiv:1301.5333

  106. 106.

    R.D. Blandford, C.F. McKee, Phys. Fluids 19, 1130 (1976)

  107. 107.

    P. Beniamini, A.J. van der Horst, MNRAS 472, 3161 (2017). arXiv:1706.07817

  108. 108.

    L. Nava, G. Vianello, N. Omodei, G. Ghisellini, G. Ghirlanda, A. Celotti, F. Longo, R. Desiante, R.Barniol Duran, MNRAS 443, 3578 (2014). arXiv:1406.6693

  109. 109.

    P. Beniamini, L. Nava, T. Piran, MNRAS 461, 51 (2016). arXiv:1606.00311

  110. 110.

    B.B. Zhang, H. van Eerten, D.N. Burrows, G.S. Ryan, P.A. Evans, J.L. Racusin, E. Troja, A. MacFadyen, ApJ 806, 15 (2015). arXiv:1405.4867

  111. 111.

    R. Santana, R.Barniol Duran, P. Kumar, ApJ 785, 29 (2014). arXiv:1309.3277

  112. 112.

    J. Granot, A.J. van der Horst, Publ. Astronom. Soc. Aust. 31, e008 (2014)

  113. 113.

    A. Panaitescu, P. Kumar, ApJ 543, 66 (2000). arXiv:astro-ph/0003246

  114. 114.

    P. D’Avanzo, S. Campana, O.S. Salafia, G. Ghirlanda, G. Ghisellini, A. Melandri, M.G. Bernardini, M. Branchesi, E. Chassande-Mottin, S. Covino et al., A&A 613, L1 (2018)

  115. 115.

    G. Ghirlanda, O.S. Salafia, Z. Paragi, M. Giroletti, J. Yang, B. Marcote, J. Blanchard, I. Agudo, T. An, M.G. Bernardini et al., Science, p. aau8815 (2019)

  116. 116.

    R. Voss, T.M. Tauris, MNRAS 342, 1169 (2003). arXiv:astro-ph/0303227

  117. 117.

    J. Granot, P. Kumar, Astrophys. J. 591, 1086 (2003)

  118. 118.

    A. Pe’er, ApJ 752, L8 (2012). arXiv:1203.5797

  119. 119.

    R. Sari, T. Piran, R. Narayan, ApJ 497, L17 (1998). arXiv:astro-ph/9712005

  120. 120.

    H. van Eerten, A. van der Horst, A. MacFadyen, ApJ 749, 44 (2012). arXiv:1110.5089

  121. 121.

    J. Granot, R. Sari, ApJ 568, 820 (2002). arXiv:astro-ph/0108027

  122. 122.

    J. Granot, T. Piran, R. Sari, ApJl 534, L163 (2000). arXiv:astro-ph/0001160

  123. 123.

    B.F. Schutz, Class. Quantum Grav. 28, 125023 (2011). arXiv:1102.5421

  124. 124.

    M. Hempel, J. Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010). arXiv:0911.4073

  125. 125.

    S. Typel, G. Röpke, T. Klähn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81, 015803 (2010). arXiv:0908.2344

  126. 126.

    V.A. Villar, J. Guillochon, E. Berger, B.D. Metzger, P.S. Cowperthwaite, M. Nicholl, K.D. Alexander, P.K. Blanchard, R. Chornock, T. Eftekhari, ApJl 851, L21 (2017). arXiv:1710.11576

  127. 127.

    J.A. Cardelli, G.C. Clayton, J.S. Mathis, ApJ 345, 245 (1989)

  128. 128.

    F. Zappa, S. Bernuzzi, D. Radice, A. Perego, T. Dietrich, Phys. Rev. Lett. 120, 111101 (2018). arXiv:1712.04267

  129. 129.

    Ligo Scientific Collaboration, VIRGO Collaboration. GRB Coordinates Network 24237, 1 (2019)

  130. 130.

    B.P. Gompertz, A.J. Levan, N.R. Tanvir, J. Hjorth, S. Covino, P.A. Evans, A.S. Fruchter, C. González-Fernández, Z.P. Jin, J.D. Lyman, ApJ 860, 62 (2018). arXiv:1710.05442

  131. 131.

    A. Rossi, G. Stratta, E. Maiorano, D. Spighi, N. Masetti, E. Palazzi, A. Gardini, A. Melandri, L. Nicastro, E. Pian, arXiv e-prints, (2019). arXiv:1901.05792

Download references

Acknowledgements

We thank F. Zappa and S. Bernuzzi for sharing EoS tables. The authors acknowledge support from INFN, under the Virgo-Prometeo initiative. O. S. acknowledges the Italian Ministry for University and Research (MIUR) for funding through project grant 1.05.06.13. M. C. acknowledges kind hospitality during drafting of this paper by the Kavli Institute for Theoretical Physics at Santa Barbara, under the program “The New Era of Gravitational-Wave Physics and Astrophysics”.

Author information

Correspondence to C. Barbieri.

Additional information

Communicated by David Blaschke.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barbieri, C., Salafia, O.S., Perego, A. et al. Electromagnetic counterparts of black hole–neutron star mergers: dependence on the neutron star properties. Eur. Phys. J. A 56, 8 (2020). https://doi.org/10.1140/epja/s10050-019-00013-x

Download citation