Advertisement

Alternative coalescence model for deuteron, tritium, helium-3 and their antinuclei

  • M. KachelrießEmail author
  • S. Ostapchenko
  • J. Tjemsland
Regular Article –Theoretical Physics
  • 20 Downloads

Abstract

Antideuteron and antihelium nuclei have been proposed as a detection channel for dark matter annihilations and decays in the Milky Way, due to the low astrophysical background expected. To estimate both the signal for various dark matter models and the astrophysical background, one usually employs the coalescence model in a Monte Carlo framework. This allows one to treat the production of antinuclei on an event-by-event basis, thereby taking into account momentum correlations between the antinucleons involved in the process. This approach lacks, however, an underlying microscopic picture, and the numerical value of the coalescence parameter obtained from fits to different reactions varies considerably. Here we propose instead to combine event-by-event Monte Carlo simulations with a microscopic coalescence picture based on the Wigner function representations of the produced antinuclei states. This approach allows us to include in a semi-classical picture both the size of the formation region, which is process dependent, and the momentum correlations. The model contains a single, universal parameter which is fixed by fitting the production spectra of antideuterons in proton–proton interactions, measured at the Large Hadron Collider. Using this value, the model describes well the production of various antinuclei both in electron–positron annihilation and in proton–proton collisions.

Notes

Acknowledgements

M.K. and J.T. acknowledge partial support from the Research Council of Norway (NFR). S.O. acknowledges support from project OS 481/2-1 of the Deutsche Forschungsgemeinschaft.

References

  1. 1.
    F. Donato, N. Fornengo, P. Salati, Phys. Rev. D 62, 043003 (2000).  https://doi.org/10.1103/PhysRevD.62.043003 ADSCrossRefGoogle Scholar
  2. 2.
    R. Battiston, Nucl. Instrum. Methods A588, 227 (2008).  https://doi.org/10.1016/j.nima.2008.01.044 ADSCrossRefGoogle Scholar
  3. 3.
    T. Aramaki, C.J. Hailey, S.E. Boggs, P. von Doetinchem, H. Fuke, S.I. Mognet, R.A. Ong, K. Perez, J. Zweerink, Astropart. Phys. 74, 6 (2016).  https://doi.org/10.1016/j.astropartphys.2015.09.001 ADSCrossRefGoogle Scholar
  4. 4.
    A. Schwarzschild, C. Zupancic, Phys. Rev. 129, 854 (1963).  https://doi.org/10.1103/PhysRev.129.854 ADSCrossRefGoogle Scholar
  5. 5.
    S.T. Butler, C.A. Pearson, Phys. Rev. 129, 836 (1963).  https://doi.org/10.1103/PhysRev.129.836 ADSCrossRefGoogle Scholar
  6. 6.
    K.J. Sun, L.W. Chen, Phys. Lett. B 751, 272 (2015).  https://doi.org/10.1016/j.physletb.2015.10.056 ADSCrossRefGoogle Scholar
  7. 7.
    L. Zhu, C.M. Ko, X. Yin, Phys. Rev. C 92(6), 064911 (2015).  https://doi.org/10.1103/PhysRevC.92.064911 ADSCrossRefGoogle Scholar
  8. 8.
    L. Zhu, H. Zheng, C. Ming Ko, Y. Sun, Eur. Phys. J. A 54(10), 175 (2018). 10.1140/epja/i2018-12610-7ADSCrossRefGoogle Scholar
  9. 9.
    S. Acharya et al., Nucl. Phys. A 971, 1 (2018).  https://doi.org/10.1016/j.nuclphysa.2017.12.004 ADSCrossRefGoogle Scholar
  10. 10.
    A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561(7723), 321 (2018).  https://doi.org/10.1038/s41586-018-0491-6 ADSCrossRefGoogle Scholar
  11. 11.
    V. Vovchenko, B. Dönigus, H. Stoecker, Phys. Lett. B 785, 171 (2018).  https://doi.org/10.1016/j.physletb.2018.08.041 ADSCrossRefGoogle Scholar
  12. 12.
    F. Bellini, A.P. Kalweit, Phys. Rev. C 99(5), 054905 (2019).  https://doi.org/10.1103/PhysRevC.99.054905 ADSCrossRefGoogle Scholar
  13. 13.
    J. Chen, D. Keane, Y.G. Ma, A. Tang, Z. Xu, Phys. Rep. 760, 1 (2018).  https://doi.org/10.1016/j.physrep.2018.07.002 ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    X. Xu, R. Rapp, Eur. Phys. J. A 55(5), 68 (2019).  https://doi.org/10.1140/epja/i2019-12757-7 ADSCrossRefGoogle Scholar
  15. 15.
    D. Oliinychenko, L.G. Pang, H. Elfner, V. Koch, Phys. Rev. C 99(4), 044907 (2019).  https://doi.org/10.1103/PhysRevC.99.044907 ADSCrossRefGoogle Scholar
  16. 16.
    M. Kadastik, M. Raidal, A. Strumia, Phys. Lett. B 683, 248 (2010).  https://doi.org/10.1016/j.physletb.2009.12.005 ADSCrossRefGoogle Scholar
  17. 17.
    L.A. Dal, Antideuterons as Signature for Dark Matter. Master’s thesis, NTNU Trondheim. http://hdl.handle.net/11250/2456366 (2011)
  18. 18.
    Y. Cui, J.D. Mason, L. Randall, JHEP 11, 017 (2010).  https://doi.org/10.1007/JHEP11(2010)017 ADSCrossRefGoogle Scholar
  19. 19.
  20. 20.
    N. Fornengo, L. Maccione, A. Vittino, JCAP 1309, 031 (2013).  https://doi.org/10.1088/1475-7516/2013/09/031 ADSCrossRefGoogle Scholar
  21. 21.
    L.A. Dal, A.R. Raklev, Phys. Rev. D 89(10), 103504 (2014).  https://doi.org/10.1103/PhysRevD.89.103504 ADSCrossRefGoogle Scholar
  22. 22.
    T. Delahaye, M. Grefe, JCAP 1507, 012 (2015).  https://doi.org/10.1088/1475-7516/2015/07/012 ADSCrossRefGoogle Scholar
  23. 23.
    J. Herms, A. Ibarra, A. Vittino, S. Wild, JCAP 1702(02), 018 (2017).  https://doi.org/10.1088/1475-7516/2017/02/018 ADSCrossRefGoogle Scholar
  24. 24.
    M. Korsmeier, F. Donato, N. Fornengo, Phys. Rev. D 97(10), 103011 (2018).  https://doi.org/10.1103/PhysRevD.97.103011 ADSCrossRefGoogle Scholar
  25. 25.
    A. Coogan, S. Profumo, Phys. Rev. D 96(8), 083020 (2017).  https://doi.org/10.1103/PhysRevD.96.083020 ADSCrossRefGoogle Scholar
  26. 26.
    V. Poulin, P. Salati, I. Cholis, M. Kamionkowski, J. Silk, Phys. Rev. D 99(2), 023016 (2019).  https://doi.org/10.1103/PhysRevD.99.023016 ADSCrossRefGoogle Scholar
  27. 27.
    T. Aramaki et al., Phys. Rep. 618, 1 (2016).  https://doi.org/10.1016/j.physrep.2016.01.002 ADSCrossRefGoogle Scholar
  28. 28.
    L.P. Csernai, J.I. Kapusta, Phys. Rep. 131, 223 (1986).  https://doi.org/10.1016/0370-1573(86)90031-1 ADSCrossRefGoogle Scholar
  29. 29.
    J.L. Nagle, B.S. Kumar, D. Kusnezov, H. Sorge, R. Mattiello, Phys. Rev. C 53, 367 (1996).  https://doi.org/10.1103/PhysRevC.53.367 ADSCrossRefGoogle Scholar
  30. 30.
    H. Sato, K. Yazaki, Phys. Lett. 98B, 153 (1981).  https://doi.org/10.1016/0370-2693(81)90976-X ADSCrossRefGoogle Scholar
  31. 31.
    R.P. Duperray, K.V. Protasov, A.Y. Voronin, Eur. Phys. J. A 16, 27 (2003).  https://doi.org/10.1140/epja/i2002-10074-0 ADSCrossRefGoogle Scholar
  32. 32.
    P. Danielewicz, G.F. Bertsch, Nucl. Phys. A 533, 712 (1991).  https://doi.org/10.1016/0375-9474(91)90541-D ADSCrossRefGoogle Scholar
  33. 33.
    R. Scheibl, U.W. Heinz, Phys. Rev. C 59, 1585 (1999).  https://doi.org/10.1103/PhysRevC.59.1585 ADSCrossRefGoogle Scholar
  34. 34.
    K. Blum, K.C.Y. Ng, R. Sato, M. Takimoto, Phys. Rev. D 96(10), 103021 (2017).  https://doi.org/10.1103/PhysRevD.96.103021 ADSCrossRefGoogle Scholar
  35. 35.
    L.A. Dal, A.R. Raklev, Phys. Rev. D 91(12), 123536 (2015).  https://doi.org/10.1103/PhysRevD.91.123536,  https://doi.org/10.1103/PhysRevD.92.089901,  https://doi.org/10.1103/PhysRevD.92.069903. [Erratum: Phys. Rev. D92, no.8,089901(2015)]
  36. 36.
    S. Acharya et al., Phys. Rev. C 97(2), 024615 (2018).  https://doi.org/10.1103/PhysRevC.97.024615 ADSCrossRefGoogle Scholar
  37. 37.
    S. Schael et al., Phys. Lett. B 639, 192 (2006).  https://doi.org/10.1016/j.physletb.2006.06.043 ADSCrossRefGoogle Scholar
  38. 38.
    R. Akers et al., Z. Phys. C 67, 203 (1995).  https://doi.org/10.1007/BF01571281 ADSCrossRefGoogle Scholar
  39. 39.
    R. Mattiello, H. Sorge, H. Stoecker, W. Greiner, Phys. Rev. C 55, 1443 (1997).  https://doi.org/10.1103/PhysRevC.55.1443 ADSCrossRefGoogle Scholar
  40. 40.
    V.I. Zhaba (2017). arXiv:1706.08306
  41. 41.
    Y.L. Dokshitzer, V.A. Khoze, A.H. Mueller, S.I. Troian, Basics of Perturbative QCD (Edition Frontieres, Gif-sur-Yvette, 1991)Google Scholar
  42. 42.
    A. Deur, S.J. Brodsky, G.F. de Teramond, Prog. Part. Nucl. Phys. 90, 1 (2016).  https://doi.org/10.1016/j.ppnp.2016.04.003 ADSCrossRefGoogle Scholar
  43. 43.
    S.G. Karshenboim, R. Beig, W. Beiglböck, W. Domcke, B.G. Englert, U. Frisch, P. Hänggi, G. Hasinger, K. Hepp, W. Hillebrandt, D. Imboden, R.L. Jaffe, R. Lipowsky, H.V. Löhneysen, I. Ojima, D. Sornette, S. Theisen, W. Weise, J. Wess, J. Zittartz, Precision Physics of Simple Atoms and Molecules, vol. 745, Lecture Notes in Physics (Springer, Berlin, 2008).  https://doi.org/10.1007/978-3-540-75479-4 CrossRefGoogle Scholar
  44. 44.
    L.A. Dal, M. Kachelrieß, Phys. Rev. D 86, 103536 (2012).  https://doi.org/10.1103/PhysRevD.86.103536 ADSCrossRefGoogle Scholar
  45. 45.
    T. Sjöstrand, S. Mrenna, P.Z. Skands, JHEP 05, 026 (2006).  https://doi.org/10.1088/1126-6708/2006/05/026 ADSCrossRefGoogle Scholar
  46. 46.
    T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, Comput. Phys. Commun. 191, 159 (2015).  https://doi.org/10.1016/j.cpc.2015.01.024 ADSCrossRefGoogle Scholar
  47. 47.
    J. Adam et al., Eur. Phys. J. C 75(5), 226 (2015).  https://doi.org/10.1140/epjc/s10052-015-3422-9 ADSCrossRefGoogle Scholar
  48. 48.
    E. Carlson, A. Coogan, T. Linden, S. Profumo, A. Ibarra, S. Wild, Phys. Rev. D 89(7), 076005 (2014).  https://doi.org/10.1103/PhysRevD.89.076005 ADSCrossRefGoogle Scholar
  49. 49.
    M. Cirelli, N. Fornengo, M. Taoso, A. Vittino, JHEP 08, 009 (2014).  https://doi.org/10.1007/JHEP08(2014)009 ADSCrossRefGoogle Scholar
  50. 50.
    S. Ting, The first five years of the alpha magnetic spectrometer on the international space station. CERN colloquium (2016). https://indico.cern.ch/event/592392/

Copyright information

© Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institutt for fysikkNTNUTrondheimNorway
  2. 2.Frankfurt Institute for Advanced StudiesFrankfurtGermany
  3. 3.D.V. Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations