Advertisement

First search for \(\alpha \) decays of naturally occurring Hf nuclides with emission of \(\gamma \) quanta

  • F. A. DanevichEmail author
  • M. Hult
  • D. V. Kasperovych
  • G. P. Kovtun
  • K. V. Kovtun
  • G. Lutter
  • G. Marissens
  • O. G. Polischuk
  • S. P. Stetsenko
  • V. I. Tretyak
Regular Article - Experimental Physics
  • 40 Downloads

Abstract

The first ever search for \(\alpha \) decays to the first excited state in Yb was performed for six isotopes of hafnium (174, 176, 177, 178, 179, 180) using a high purity Hf sample of natural isotopic abundance with a mass of 179.8 g. For \(^{179}\)Hf, also \(\alpha \) decay to the ground state of \(^{175}\)Yb was searched for thanks to the \(\beta \)-instability of the daughter nuclide \(^{175}\)Yb. The measurements were conducted using an ultra-low-background HPGe-detector system located 225 m underground. After 75 days of data taking no decays were detected but lower bounds for the half-lives of the decays were derived on the level of \(\lim T_{1/2}\sim 10^{15}{-}10^{18}\) a. The decay with the shortest half-life based on theoretical calculation is the decay of \(^{174}\)Hf to the first \(2^+\) 84.3 keV excited level of \(^{170}\)Yb. The experimental lower bound was found to be \(T_{1/2}\ge 3.3\times 10^{15}\) a.

Notes

Acknowledgements

This project received support from the EC-JRC open access project EUFRAT under Horizon2020. The group from the Institute for Nuclear Research (Kyiv, Ukraine) was supported in part by the program of the National Academy of Sciences of Ukraine “Fundamental research on high-energy physics and nuclear physics (international cooperation)”. D.V.K. and O.G.P. were supported in part by the project “Investigations of rare nuclear processes” of the program of the National Academy of Sciences of Ukraine “Laboratory of young scientists” (Grant No. 0118U002328).

References

  1. 1.
    P. Belli et al., Experimental searches for rare alpha and beta decays. Eur. Phys. J. A 55, 140 (2019)ADSCrossRefGoogle Scholar
  2. 2.
    J. Meija et al., Isotopic compositions of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 88, 293 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Wang et al., The AME2016 atomic mass evaluation. Chin. Phys. C 41, 030003 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    W. Riezler, G. Kauw, Natürliche Radioaktivität von Gadolinium 152 und Hafnium 174. Z. Naturforsch. 14a, 196 (1959)ADSCrossRefGoogle Scholar
  5. 5.
    R.D. Macfarlane, T.P. Kohman, Natural alpha radioactivity in medium-heavy elements. Phys. Rev. 121, 1758 (1961)ADSCrossRefGoogle Scholar
  6. 6.
    C.M. Baglin et al., Nuclear data sheets for A = 170. Nucl. Data Sheets 153, 1 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    M.S. Basunia, Nuclear data sheets for A = 175. Nucl. Data Sheets 102, 719 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    D.N. Poenaru, M. Ivascu, Estimation of the alpha decay half-lives. J. Phys. 44, 791 (1983)CrossRefGoogle Scholar
  9. 9.
    B. Buck, A.C. Merchant, S.M. Perez, Ground state to ground state alpha decays of heavy even-even nuclei. J. Phys. G 17, 1223 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    B. Buck, A.C. Merchant, S.M. Perez, Favoured alpha decays of odd-mass nuclei. J. Phys. G 18, 143 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    V.Y. Denisov, O.I. Davidovskaya, I.Y. Sedykh, Improved parametrization of the unified model for \(\alpha \) decay and \(\alpha \) capture. Phys. Rev. C 92, 014602 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    J.S.E. Wieslander et al., The Sandwich spectrometer for ultra low-level \(\gamma \)-ray spectrometry. Appl. Rad. Isot. 67, 731 (2009)CrossRefGoogle Scholar
  13. 13.
    M. Hult et al., Comparison of background in underground HPGe-detectors in different lead shield configurations. Appl. Radiat. Isot. 81, 103 (2013)CrossRefGoogle Scholar
  14. 14.
    R.B. Firestone et al., Table of Isotopes, 8th edn. (Wiley, New York, 1996) (CD update; 1998) Google Scholar
  15. 15.
    I. Kawrakow et al., The EGSnrc code system: Monte Carlo simulation of electron and photon transport. Technical Report PIRS-701, National Research Council Canada (2017)Google Scholar
  16. 16.
    G. Lutter, M. Hult, G. Marissens, H. Stroh, F. Tzika, A gamma-ray spectrometry analysis software environment. Appl. Rad. Isot. 134, 200 (2018)CrossRefGoogle Scholar
  17. 17.
    G.J. Feldman, R.D. Cousins, Unified approach to the classical statistical analysis of small signals. Phys. Rev. D 57, 3873 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    B. Singh, Nuclear data sheets for A = 172. Nucl. Data Sheets 75, 199 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    V.S. Shirley, Nuclear data sheets for A = 173. Nucl. Data Sheets 75, 377 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    E. Browne, H. Junde, Nuclear data sheets for A = 174. Nucl. Data Sheets 87, 15 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    M.S. Basunia, Nuclear data sheets for A = 176. Nucl. Data Sheets 107, 791 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    K. Heyde, Basic Ideas and Concepts in Nuclear Physics, 2nd edn. (IoP, Bristol, 1999)zbMATHGoogle Scholar
  23. 23.
    A. Burger et al., Cesium hafnium chloride: A high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy. Appl. Phys. Lett. 107, 143505 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Fujimoto et al., New intrinsic scintillator with large effective atomic number: Tl\(_2\)HfCl\(_6\) and Tl\(_2\)ZrCl\(_6\) crystals for X-ray and gamma-ray detections. Sens. Mater. 30(7), 1577 (2018)Google Scholar

Copyright information

© Società Italiana di Fisica (SIF) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • F. A. Danevich
    • 1
    Email author
  • M. Hult
    • 2
  • D. V. Kasperovych
    • 1
  • G. P. Kovtun
    • 3
    • 4
  • K. V. Kovtun
    • 5
  • G. Lutter
    • 2
  • G. Marissens
    • 2
  • O. G. Polischuk
    • 1
  • S. P. Stetsenko
    • 3
  • V. I. Tretyak
    • 1
  1. 1.Institute for Nuclear ResearchKyivUkraine
  2. 2.European Commission, Joint Research CentreGeelBelgium
  3. 3.National Scientific Center Kharkiv Institute of Physics and TechnologyKharkivUkraine
  4. 4.Karazin Kharkiv National UniversityKharkivUkraine
  5. 5.Public Enterprise “Scientific and Technological Center Beryllium”KharkivUkraine

Personalised recommendations