Advertisement

Influence of strong magnetic field on the structure properties of strange quark stars

  • 31 Accesses

Abstract

We investigate the thermodynamic properties of strange quark matter under the strong magnetic field in the framework of the MIT bag model in two cases of bag constants. We consider two cases of the magnetic field, the uniform magnetic field and the density-dependent magnetic field to calculate the equation of state of strange quark matter. For the case of density-dependent magnetic field, we use a Gaussian equation with two free parameters \(\beta \) and \(\theta \) and use two different sets of the parameters for the magnetic field changes (a slow and a fast decrease of the magnetic field from the center to the surface). Our results show that the energy conditions based on the limitation of the energy-momentum tensor, are satisfied in the corresponding conditions. We also show that the equation of state of strange quark matter becomes stiffer by increasing the magnetic field. In this paper, we also calculate the structure parameters of a pure strange quark star using the equation of state. We investigate the compactification factor (2M/R) and the surface redshift of star in different conditions. The results show that the strange quark star is denser than the neutron star and it is more compact in the presence of the stronger magnetic field. As another result, the compactification factor increases when we use a slow increase of the magnetic field from the surface to the center. Eventually, we compare our results with the observational results for some strange star candidates, and we find that the structure of the strange star candidates is comparable to that of the star in our model.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data related to these given discussions have been given in Tables 1, 2, 3.]

References

  1. 1.

    M. Prakash, J.M. Lattimer, A.W. Steiner, D. Page, Nucl. Phys. A 715, 835 (2003)

  2. 2.

    K. Nakazato, K. Sumiyoshi, S. Yamada, Phys. Rev. D 77, 103006 (2008)

  3. 3.

    K. Nakazato, K. Sumiyoshi, S. Yamada, Astro. Phys. J. 721, 1284 (2010)

  4. 4.

    E.D. Commins, P.H. Bucksbaum, Weak Interactions of Leptons and Quarks (Cambridge University Press, Cambridge, 1983)

  5. 5.

    M. Gell-Mann, Phys. Lett. 8, 214 (1964)

  6. 6.

    G. Zweig, CERN Reports, 8419/TH.401 and 8419/ TH.412 (1964)

  7. 7.

    D.D. Ivanenko, D.F. Kurdgelaidze, Astrophysics 1, 251 (1965)

  8. 8.

    D.D. Ivanenko, D.F. Kurdgelaidze, Lettere al Nuovo Cimento 2, 13 (1969)

  9. 9.

    N. Itoh, Prog. Theor. Exp. Phys. 44, 291 (1970)

  10. 10.

    E. Witten, Phys. Rev. D 30, 272 (1984)

  11. 11.

    J.W. Yu, R.X. Xu, Res. Astron. Astrophys. 10, 815 (2010)

  12. 12.

    S. Mukhopadhyay, D. Atta, D.N. Basu, Rom. Rep. Phys. 69, 101 (2017)

  13. 13.

    D. Lai, L. Shapiro, Astrophys. J. 383, 745 (1991)

  14. 14.

    P. Haensel, J.L. Zdunik, R. Schaeer, Astron. Astrophys. 160, 121 (1986)

  15. 15.

    M. Bocquet et al., Astron. Astrophys. 301, 757 (1995)

  16. 16.

    L.D. Landau, J. Exp. Theor. Phys. 3, 920 (1956)

  17. 17.

    L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon Press, Oxford, 1977)

  18. 18.

    Z. Rezaei, G.H. Bordbar, Eur. Phys. J. A 52, 132 (2016)

  19. 19.

    Z. Rezaei, G.H. Bordbar, Eur. Phys. J. A 53, 43 (2017)

  20. 20.

    L.L. Lopes, D.P. Menezes, J. Cosmol. Astropart. Phys. 8, 002 (2015)

  21. 21.

    G.H. Bordbar, H. Bahri, F. Kayanikhoo, Res. Astron. Astrophys. 12, 1280 (2012)

  22. 22.

    G.H. Bordbar, A. Peivand, Res. Astron. Astrophys. 11, 851 (2011)

  23. 23.

    G.H. Bordbar, F. Kayanikhoo, H. Bahri, Iran. J. Sci. Technol. A37, 165 (2013)

  24. 24.

    G.H. Bordbar, Z. Alizadeh, Astrophysics 57, 130 (2014)

  25. 25.

    G.H. Bordbar, B. Ziaei, Res. Astron. Astrophys. 12, 540 (2012)

  26. 26.

    G.H. Bordbar, A. Poostforush, A. Zamani, Astrophysics 54, 277 (2011)

  27. 27.

    G.H. Bordbar, R. Hosseini, F. Kayanikhoo, A. Poostforush, Astrophysics 62, 276 (2018)

  28. 28.

    G.H. Bordbar, M. Bigdeli, T. Yazdizadeh, Int. J. Mod. Phys. A 21, 5991 (2006)

  29. 29.

    T. Yazdizadeh, G.H. Bordbar, Res. Astron. Astrophys. 11, 471 (2011)

  30. 30.

    C. Alcock, E. Farhi, A. Olinto, Astrophys. J. 310, 261 (1986)

  31. 31.

    Z. Xiaoping et al., Phys. Rev. C 70, 015803 (2004)

  32. 32.

    P.K. Sahu, Astrophys. J. 363, 603 (1995)

  33. 33.

    R.K. Pathria, Statistical Mechanics (Pergamon Press, Oxford, 1980)

  34. 34.

    A. Chodos et al., Phys. Rev. D 9, 3471 (1974)

  35. 35.

    S. Hardeman, Ph.D thesis, Universiteit van Amesterdam (2007)

  36. 36.

    G.F. Burgio et al., Phys. Lett. B 19, 526 (2002)

  37. 37.

    G.F. Burgio et al., Phys. Rev. C 66, 025802 (2002)

  38. 38.

    U. Heinz, Nucl. Phys. A 685, 414 (2001)

  39. 39.

    U. Heinz, M. Jacob, (2000). arXiv:nucl-th/0002042

  40. 40.

    G.H. Bordbar, M. Modarres, J. Phys. G23, 1631 (1997)

  41. 41.

    G.H. Bordbar, M. Modarres, Phys. Rev. C 57, 714 (1998)

  42. 42.

    G.H. Bordbar, M. Bigdeli, Phys. Rev. C 75, 045804 (2007)

  43. 43.

    G.H. Bordbar, M. Bigdeli, Phys. Rev. C 77, 015805 (2008)

  44. 44.

    A. Rabhi et al., J. Phys. G 36, 115204 (2009)

  45. 45.

    D.P. Menezes et al., Phys. Rev. C 80, 065805 (2009)

  46. 46.

    V. Dexheimer, R. Negreiros, S. Schramm, Eur. Phys. J. A 48, 189 (2012)

  47. 47.

    D. Bandyopadhyay, S. Chakrabarty, S. Pal, Phys. Rev. Lett. 79, 2176 (1997)

  48. 48.

    R.H. Casali, L.B. Castro, D.P. Menezes, Phys. Rev. C 89, 015805 (2014)

  49. 49.

    S. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-time (Cambridge University Press, Cambridge, 1973)

  50. 50.

    E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge University Press, Cambridge, 2004)

  51. 51.

    S.L. Shapiro, S.A. Teukolski, Black Holes, White Dwarfs, and Neutron Stars (Wiley-Interscience, New York, 1983)

  52. 52.

    J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

  53. 53.

    R.C. Tolman, Relativity, Thermodynamics and Cosmology (Oxford Press, Oxford, 1934)

  54. 54.

    F. Weber et al., Proc. Int. Astron. Union 291, 61 (2012)

  55. 55.

    H.A. Buchdahl, Phys. Rev. 116, 1027 (1959)

  56. 56.

    F. Rahaman et al., Gen. Relativ. Gravit. 44, 107 (2012)

  57. 57.

    M. Kalam et al., Eur. Phys. J. C 72, 2248 (2012)

  58. 58.

    N. Straumann, General Relativity and Relativistic Astrophysics (Springer, Berlin, 1984)

  59. 59.

    C.G. Bohmer, T. Harko, Class. Quantum Gravity 23, 6479 (2006)

  60. 60.

    P. Haensel, J.P. Lasota, J.L. Zdunik, Astron. Astrophys. 344, 151 (1999)

  61. 61.

    M.K. Jasim et al., Eur. Phys. J. C 78, 603 (2018)

  62. 62.

    G.H. Bordbar, Z. Rezaei, Res. Astron. Astrophys. 13, 197 (2013)

  63. 63.

    Eslam Panah et al., Astrophys. J. 848, 24 (2017)

  64. 64.

    E. Ostgaard, Phys. Rep. 242, 313 (1994)

  65. 65.

    I. Bombaci, (2002). arXiv:astro-ph/0201369

  66. 66.

    T. Guver et al., Astrophys. J. 712, 964 (2010)

  67. 67.

    T. Guver et al., Astrophys. J. 719, 1807 (2010)

  68. 68.

    X.D. Li et al., Phys. Rev. Lett. 83, 3776 (1999)

Download references

Acknowledgements

G. H. Bordbar wishes to thank Shiraz University Research Council.

Author information

Correspondence to Gholam Hossein Bordbar.

Additional information

Communicated by G. Torrieri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kayanikhoo, F., Naficy, K. & Bordbar, G.H. Influence of strong magnetic field on the structure properties of strange quark stars. Eur. Phys. J. A 56, 2 (2020) doi:10.1140/epja/s10050-019-00004-y

Download citation