Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Clustering structure effect on Hanbury-Brown–Twiss correlation in \(^{12}\hbox {C} {+^{197}}\hbox {Au}\) collisions at 200 GeV

Abstract

Through \(^{12}\hbox {C} {+^{197}}\hbox {Au}\) collisions at \(\sqrt{s_{NN}} = 200\,\hbox {GeV}\) using a multiphase transport (AMPT) model, the azimuthal angle dependences of the Hanbury Brown–Twiss (HBT) radii relative to the second- and third-order participant plane from \(\pi \)\(\pi \) correlations are discussed. Three initial geometric configurations of \(^{12}\hbox {C}\), namely three-\(\alpha \)-cluster triangle, three-\(\alpha \)-cluster chain and Woods–Saxon distribution of nucleons, are taken into account, and their effects on the correlations are investigated. The ratio of the third- to the second-order HBT radii \(R_{o(s),3}^2/R_{o(s),2}^2\) is shown to be a clear probe for three configurations. In addition, this work presents the hadronic rescattering time evolution of the azimuthally dependent HBT radii. From the present study, one can learn that the HBT correlation from identical particles at freeze-out is able to provide the information of different initial configurations as collective flow proposed before.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

References

  1. 1.

    W. Greiner, J.Y. Park, W. Scheid, Nuclear Molecules (World Scientific, Singapore, 1995)

  2. 2.

    W. von Oertzen, M. Freer, Y. Kanada-En’yo, Phys. Rep. 432, 43 (2006)

  3. 3.

    G. Gamow, Constitution of Atomic Nuclei and Radioactivity (Clarendon Press, Oxford, 1931)

  4. 4.

    K. Ikeda, N. Takigawa, H. Horiuchi, Prog. Theor. Phys. Suppl. 68, 464 (1968)

  5. 5.

    D.M. Brink, J.J. Castro, Nucl. Phys. A 216, 109 (1973)

  6. 6.

    T. Yamada, Y. Funaki, H. Horiuchi, G. Röpke, P. Schuck, A. Tohsaki, in Clusters in Nuclei, vol. 2 (Springer, New York, 2012), pp. 229–298

  7. 7.

    C.J. Horowitz, A. Schwenk, Nucl. Phys.A 776, 55 (2006)

  8. 8.

    J.B. Natowitz, G. Röpke, S. Typel, D. Blaschke, A. Bonasera, K. Hagel, T. Klähn, S. Kowalski, L. Qin, S. Shlomo et al., Phys. Rev. Lett. 104, 202501 (2010)

  9. 9.

    L. Qin, K. Hagel, R. Wada, J.B. Natowitz, S. Shlomo, A. Bonasera, G. Röpke, S. Typel, Z. Chen, M. Huang et al., Phys. Rev. Lett. 108, 172701 (2012)

  10. 10.

    H. Pais, F. Gulminelli, C. Providencia, G. Röpke, Nucl. Sci. Tech. 29, 181 (2018)

  11. 11.

    F. Hoyle, Astrophys. J. Suppl. Ser. 1, 121 (1954)

  12. 12.

    Y. Liu, Y.L. Ye, Nucl. Sci. Tech. 29, 184 (2018)

  13. 13.

    M. Aygun, Z. Aygun, Nucl. Sci. Tech. 28, 86 (2017)

  14. 14.

    W.B. He, Y.G. Ma, X.G. Cao, X.Z. Cai, G.Q. Zhang, Phys. Rev. Lett. 113, 032506 (2014)

  15. 15.

    W.B. He, Y.G. Ma, X.G. Cao, X.Z. Cai, G.Q. Zhang, Phys. Rev. C 94, 014301 (2016)

  16. 16.

    C.C. Guo, W.B. He, Y.G. Ma, Chin. Phys. Lett. 34, 092101 (2017)

  17. 17.

    C.-C. Guo, Y.-G. Ma, Z.-D. An, B.-S. Huang, Phys. Rev. C 99, 044607 (2019)

  18. 18.

    B.S. Huang, Y.G. Ma, W. He, Phys. Rev. C 95, 034606 (2017)

  19. 19.

    B.S. Huang, Y.G. Ma, W. He, Eur. Phys. J. A 53, 119 (2017)

  20. 20.

    W. Broniowski, E.R. Arriola, Phys. Rev. Lett. 112, 112501 (2014)

  21. 21.

    P. Bożek, W. Broniowski, E.R. Arriola, M. Rybczyński, Phys. Rev. C 90, 064902 (2014)

  22. 22.

    S. Zhang, Y.G. Ma, J.H. Chen, W.B. He, C. Zhong, Phys. Rev. C 95, 064904 (2017)

  23. 23.

    S. Zhang, Y.G. Ma, J.H. Chen, W.B. He, C. Zhong, Eur. Phys. J. A 54, 161 (2018)

  24. 24.

    Z.W. Xu, S. Zhang, Y.G. Ma, J.H. Chen, C. Zhong, Nucl. Sci. Tech. 29, 186 (2018)

  25. 25.

    I. Arsene, BRAHMS Coll, et al., Nucl. Phys. A 757, 1 (2005)

  26. 26.

    B.B. Back, PHOBS Coll., et al., Nucl. Phys. A 757, 28 (2005)

  27. 27.

    J. Adams, STAR Coll., et al., Nucl. Phys. A 757, 102 (2005)

  28. 28.

    K. Adcox, PHENIX Coll., et al., Nucl. Phys. A 757, 184 (2005)

  29. 29.

    J. Chen, D. Keane, Y.-G. Ma, A. Tang, Z. Xu, Phys. Rep. 760, 1 (2018)

  30. 30.

    A. Andronic, J. Stachel, P. Braunmunzinger, K. Redlich, Nature 561, 321 (2018)

  31. 31.

    X. Luo, N. Xu, Nucl. Sci. Tech. 28, 112 (2017)

  32. 32.

    X. Jin, J. Chen, Z. Lin, G. Ma, Y. Ma, S. Zhang, Sci. China Phys. Mech. Astron. 62, 11012 (2018)

  33. 33.

    R.H. Brown, R.Q. Twiss, Nature 177, 27 (1956)

  34. 34.

    R.H. Brown, R.Q. Twiss, Nature 178, 1046 (1956)

  35. 35.

    G. Goldhaber, S. Goldhaber, W. Lee, A. Pais, Phys. Rev. 120, 300 (1960)

  36. 36.

    G.I. Kopylov, M.I. Podgoretsky, Sov. J. Nucl. Phys. 15, 219 (1972). [Yad. Fiz.15,392(1972)]

  37. 37.

    E.V. Shuryak, Phys. Lett. B 44, 387 (1973)

  38. 38.

    S. Pratt, Phys. Rev. Lett. 53, 1219 (1984)

  39. 39.

    S. Pratt, Phys. Rev. D 33, 72 (1986)

  40. 40.

    S.E. Koonin, Phys. Lett. B 70, 43 (1977)

  41. 41.

    M. Gyulassy, S.K. Kauffmann, Nucl. Phys. A 362, 503 (1981)

  42. 42.

    M.G. Bowler, Zeitschrift fuer Physik C Particles and Fields 39, 81 (1988)

  43. 43.

    W.A. Zajc, Phys. Rev. D 35, 3396 (1987)

  44. 44.

    M.A. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Annu. Rev. Nucl. Part. Sci. 55, 357 (2005)

  45. 45.

    L. Adamczyk, STAR Collaboration, et al., Nature 527, 345 (2015)

  46. 46.

    Y.G. Ma, D. Fang, X.Y. Sun et al., Phys. Lett. B 743, 306 (2015)

  47. 47.

    D.Q. Fang, Y.G. Ma, X.Y. Sun et al., Phys. Rev. C 94, 044621 (2016)

  48. 48.

    Z.Q. Zhang, Y.G. Ma, Nucl. Sci. Tech. 27, 152 (2016)

  49. 49.

    J. Yang, W.-N. Zhang, Nucl. Sci. Tech. 27, 147 (2016)

  50. 50.

    P. Braun-Munzinger, J. Stachel, J.P. Wessels, N. Xu, Phys. Lett. B 344, 43 (1995)

  51. 51.

    J. Cleymans, K. Redlich, Phys. Rev. Lett. 81, 5284 (1998)

  52. 52.

    F. Becattini, J. Cleymans, A. Keränen, E. Suhonen, K. Redlich, Phys. Rev. C 64, 024901 (2001)

  53. 53.

    P. Huovinen, P.F. Kolb, U. Heinz, P.V. Ruuskanen, S.A. Voloshin, Phys. Lett. B 503, 58 (2001)

  54. 54.

    B. Betz, J. Noronha, G. Torrieri, M. Gyulassy, I. Mishustin, D.H. Rischke, Phys. Rev. C 79, 034902 (2009)

  55. 55.

    B. Schenke, S. Jeon, C. Gale, Phys. Rev. Lett. 106, 042301 (2011)

  56. 56.

    Z. Xu, C. Greiner, Phys. Rev. C 71, 064901 (2005)

  57. 57.

    Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005)

  58. 58.

    W. Cassing, E.L. Bratkovskaya, Nucl. Phys. A 831, 215 (2009)

  59. 59.

    H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, H. Stöcker, Phys. Rev. C 78, 044901 (2008)

  60. 60.

    K. Werner, I. Karpenko, T. Pierog, M. Bleicher, K. Mikhailov, Phys. Rev. C 82, 044904 (2010)

  61. 61.

    H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, Phys. Rev. Lett. 106, 192301 (2011)

  62. 62.

    H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, Phys. Rev. Lett. 109, 139904 (2012)

  63. 63.

    H. Song, Y. Zhou, K. Gajdosova, Nucl. Sci. Tech. 28, 99 (2017)

  64. 64.

    M. Gyulassy, X.-N. Wang, Comput. Phys. Commun. 83, 307 (1994)

  65. 65.

    B. Zhang, Comput. Phys. Commun. 109, 193 (1998)

  66. 66.

    T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994)

  67. 67.

    B.-A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995)

  68. 68.

    Z.-W. Lin, C.M. Ko, Phys. Rev. C 65, 034904 (2002)

  69. 69.

    M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, A. Richter, Phys. Rev. Lett. 98, 032501 (2007)

  70. 70.

    Y. Kanada-En’yo, M. Kimura, A. Ono, PTEP 2012, 01A202 (2012)

  71. 71.

    L. Liu, P.W. Zhao, Chin. Phys. C 36, 818 (2012)

  72. 72.

    D.J. Marin-Lambarri, R. Bijker, M. Freer, M. Gai, T. Kokalova, D.J. Parker, C. Wheldon, Phys. Rev. Lett. 113, 012502 (2014)

  73. 73.

    A.S. Umar, J.A. Maruhn, N. Itagaki, V.E. Oberacker, Phys. Rev. Lett. 104, 212503 (2010)

  74. 74.

    H. Morinaga, Phys. Lett. 21, 78 (1966)

  75. 75.

    I. Angeli, K. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)

  76. 76.

    U.W. Heinz, B.V. Jacak, Ann. Rev. Nucl. Part. Sci. 49, 529 (1999)

  77. 77.

    M.I. Podgoretsky, Sov. J. Nucl. Phys. 37, 272 (1983). [Yad. Fiz.37,455(1983)]

  78. 78.

    G. Bertsch, M. Gong, M. Tohyama, Phys. Rev. C 37, 1896 (1988)

  79. 79.

    U.A. Wiedemann, Phys. Rev. C 57, 266 (1998)

  80. 80.

    B. Alver, G. Roland, Phys. Rev. C 81, 054905 (2010)

  81. 81.

    S.A. Voloshin, A.M. Poskanzer, A. Tang, G. Wang, Phys. Lett. B 659, 537 (2008)

  82. 82.

    R.A. Lacey, R. Wei, N.N. Ajitanand, A. Taranenko, Phys. Rev. C 83, 044902 (2011)

  83. 83.

    C.J. Plumberg, C. Shen, U.W. Heinz, Phys. Rev. C 88, 044914 (2013). [Erratum: Phys. Rev.C88, 069901(2013)]

  84. 84.

    P. Bozek, Phys. Rev. C 89, 044904 (2014)

  85. 85.

    J. Adams et al. (STAR Coll.), Phys. Rev. C 71, 044906 (2005)

  86. 86.

    J. Adams et al. (STAR Coll.), Phys. Rev. Lett. 93, 012301 (2004)

  87. 87.

    A. Adare et al. (PHENIX Coll.), Phys. Rev. C 92, 034914 (2015)

  88. 88.

    S. Acharya et al. (ALICE Coll.), Phys. Lett. B 785, 320 (2018)

  89. 89.

    F. Retiere, M.A. Lisa, Phys. Rev. C 70, 044907 (2004)

  90. 90.

    M. Lisa et al. (STAR Coll.), Nukleonika 49, s71 (2004)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under contract Nos. 11890714, 11875066, 11421505, and 11775288, National Key R&D Program of China under Grant No. 2016YFE0100900 and 2018YFE0104600, the Key Research Program of Frontier Sciences of the CAS under Grant No. QYZDJ-SSW-SLH002, and the Key Research Program of the CAS under Grant No. XDPB09.

Author information

Correspondence to Song Zhang or Yu-Gang Ma.

Additional information

Communicated by Xin-Nian Wang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, J., Zhang, S., Ma, Y. et al. Clustering structure effect on Hanbury-Brown–Twiss correlation in \(^{12}\hbox {C} {+^{197}}\hbox {Au}\) collisions at 200 GeV. Eur. Phys. J. A 56, 52 (2020). https://doi.org/10.1140/epja/s10050-019-00002-0

Download citation