Advertisement

Anisotropic flow of charged and identified hadrons at FAIR energies and its dependence on the nuclear equation of state

  • Sudhir Pandurang RodeEmail author
  • Partha Pratim Bhaduri
  • Ankhi Roy
Regular Article - Theoretical Physics
  • 11 Downloads

Abstract.

In this article, we examine the equation of state (EoS) dependence of the anisotropic flow parameters (\( v_{1}\), \( v_{2}\) and \( v_{4}\)) of charged and identified hadrons, as a function of transverse momentum (\( p_{\mathrm{T}}\)), rapidity (\( y_{c.m.}\)) and the incident beam energy (\( E_{\mathrm{Lab}}\)) in mid-central Au + Au collisions in the energy range \( E_{\mathrm{Lab}} = 6-25 A\) GeV. Simulations are carried out by employing different variants of the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model, namely the pure transport (cascade) mode and the hybrid mode. In the hybrid mode, transport calculations are coupled with the ideal hydrodynamical evolution. Within the hydrodynamic scenario, two different equations of state (EoS) viz. Hadron gas and Chiral + deconfinement EoS have been employed separately to possibly mimic the hadronic and partonic scenarios, respectively. It is observed that the flow parameters are sensitive to the onset of hydrodynamic expansion of the fireball in comparison to the pure transport approach. The results would be useful as predictions for the upcoming low energy experiments at Facility for Antiproton and Ion Research (FAIR) and Nuclotron-based Ion Collider fAcility (NICA).

References

  1. 1.
    W. Florkowski, Acta Phys. Pol. B 45, 2329 (2014)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    P. Braun-Munzinger, J. Wambach, Rev. Mod. Phys. 81, 1031 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    PHENIX Collaboration (K. Adcox et al.), Nucl. Phys. A 757, 184 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 107, 032301 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    ATLAS Collaboration (G. Aad et al.), Phys. Rev. C 86, 014907 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    CMS Collaboration (S. Chatrchyan et al.), Phys. Rev. C 89, 044906 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    STAR Collaboration (V. Okorokov), EPJ Web of Conferences 158, 01004 (2017)CrossRefGoogle Scholar
  9. 9.
    G. Odyniec, PoS CPOD2013, 043 (2013)Google Scholar
  10. 10.
    V. Kekelidze, A. Kovalenko, R. Lednicky, V. Matveev, I. Meshkov, A. Sorin, G. Trubnikov, Nucl. Phys. A 956, 846 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    CBM Collaboration (T. Ablyazimov et al.), Eur. Phys. J. A 53, 60 (2017)CrossRefGoogle Scholar
  12. 12.
    C. Sturm, B. Sharkov, H. Stoecker, Nucl. Phys. A 834, 682c (2010)ADSCrossRefGoogle Scholar
  13. 13.
    ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 105, 252302 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    PHENIX Collaboration (K. Adcox et al.), Nucl. Phys. A 757, 184 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Nara, H. Niemi, A. Ohnishi, H. Stöcker, Phys. Rev. C 94, 034906 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Nara, N. Otuka, A. Ohnishi, K. Niita, S. Chiba, Phys. Rev. C 61, 024901 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    V.P. Konchakovski, W. Cassing, Y.B. Ivanov, V.D. Toneev, Phys. Rev. C 90, 014903 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    E895 Collaboration (H. Liu et al.), Phys. Rev. Lett. 84, 5488 (2000)CrossRefGoogle Scholar
  20. 20.
    E895 Collaboration (P. Chung et al.), Phys. Rev. Lett. 85, 940 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    P. Chung et al., Phys. Rev. Lett. 86, 2533 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    NA49 Collaboration (H. Appelshauser et al.), Phys. Rev. Lett. 80, 4136 (1998)CrossRefGoogle Scholar
  23. 23.
    STAR Collaboration (J. Adams et al.), Phys. Rev. C 72, 014904 (2005)CrossRefGoogle Scholar
  24. 24.
    PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 97, 012301 (2006)CrossRefGoogle Scholar
  25. 25.
    PHOBOS Collaboration (B. Alver et al.), Phys. Rev. Lett. 98, 242302 (2007)CrossRefGoogle Scholar
  26. 26.
    P.P. Bhaduri, S. Chattopadhyay, Phys. Rev. C 81, 034906 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    S. Sarkar, P. Mali, A. Mukhopadhyay, Phys. Rev. C 95, 014908 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    J. Auvinen, H. Petersen, Phys. Rev. C 88, 064908 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    M. Bleicher et al., J. Phys. G 25, 1859 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    L.W. Chen, V. Greco, C.M. Ko, P.F. Kolb, Phys. Lett. B 605, 95 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    N. Borghini, J.Y. Ollitrault, Phys. Lett. B 642, 227 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    C. Gombeaud, J.Y. Ollitrault, Phys. Rev. C 81, 014901 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    M. Luzum, C. Gombeaud, J.Y. Ollitrault, Phys. Rev. C 81, 054910 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Nara, J. Steinheimer, H. Stoecker, Eur. Phys. J. A 54, 188 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    H. Petersen, Q. Li, X. Zhu, M. Bleicher, Phys. Rev. C 74, 064908 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    H. Petersen, M. Bleicher, Phys. Rev. C 79, 054904 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    J. Steinheimer, J. Auvinen, H. Petersen, M. Bleicher, H. Stöcker, Phys. Rev. C 89, 054913 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    B. Andersson, G. Gustafson, B. Nilsson-Almqvist, Nucl. Phys. B 281, 289 (1987)ADSCrossRefGoogle Scholar
  41. 41.
    G. Burau et al., Phys. Rev. C 71, 054905 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, H. Stöcker, Phys. Rev. C 78, 044901 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    P.F. Kolb, P. Huovinen, U.W. Heinz, H. Heiselberg, Phys. Lett. B 500, 232 (2001)ADSCrossRefGoogle Scholar
  44. 44.
    PHOBOS Collaboration (B.B. Back et al.), J. Phys. G 31, S41 (2005)CrossRefGoogle Scholar
  45. 45.
    F. Cooper, G. Frye, Phys. Rev. D 10, 186 (1974)ADSCrossRefGoogle Scholar
  46. 46.
    D. Zschiesche, S. Schramm, J. Schaffner-Bielich, H. Stoecker, W. Greiner, Phys. Lett. B 547, 7 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    J. Steinheimer, S. Schramm, H. Stöcker, Phys. Rev. C 84, 045208 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    S.P. Rode, A. Roy, P.P. Bhaduri, DAE Symp. Nucl. Phys. 62, 892 (2017)Google Scholar
  49. 49.
    P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen, S.A. Voloshin, Phys. Lett. B 503, 58 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    PHENIX Collaboration (S. Esumi), Nucl. Phys. A 715, 599 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    STAR Collaboration (C. Adler et al.), Phys. Rev. Lett. 87, 182301 (2001)CrossRefGoogle Scholar
  52. 52.
    STAR Collaboration (C. Adler et al.), Phys. Rev. Lett. 90, 032301 (2003)CrossRefGoogle Scholar
  53. 53.
    STAR Collaboration (C. Adler et al.), Phys. Rev. Lett. 89, 132301 (2002)CrossRefGoogle Scholar
  54. 54.
    R. Abir, M.G. Mustafa, Phys. Rev. C 80, 051903 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    R.J. Fries, B. Muller, C. Nonaka, S.A. Bass, Phys. Rev. C 68, 044902 (2003)ADSCrossRefGoogle Scholar
  56. 56.
    R.J.M. Snellings, H. Sorge, S.A. Voloshin, F.Q. Wang, N. Xu, Phys. Rev. Lett. 84, 2803 (2000)ADSCrossRefGoogle Scholar
  57. 57.
    G. Song, B.A. Li, C.M. Ko, Nucl. Phys. A 646, 481 (1999)ADSCrossRefGoogle Scholar
  58. 58.
    S. Pal, C.M. Ko, Z.w. Lin, B. Zhang, Phys. Rev. C 62, 061903 (2000)ADSCrossRefGoogle Scholar
  59. 59.
    D.B. Kaplan, A.E. Nelson, Phys. Lett. B 175, 57 (1986)ADSCrossRefGoogle Scholar
  60. 60.
    L. Bravina, Y. Kvasiuk, S. Sivoklokov, O. Vitiuk, E. Zabrodin, Universe 5, 69 (2019)ADSCrossRefGoogle Scholar
  61. 61.
    E895 Collaboration (P. Chung et al.), Phys. Rev. C 66, 021901 (2002)ADSCrossRefGoogle Scholar
  62. 62.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 92, 062301 (2004)CrossRefGoogle Scholar
  63. 63.
    PHENIX Collaboration (H. Masui), Nucl. Phys. A 774, 511 (2006)CrossRefGoogle Scholar
  64. 64.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 75, 054906 (2007)CrossRefGoogle Scholar
  65. 65.
    PHENIX Collaboration (S. Huang), J. Phys. G 35, 104105 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    V.P. Konchakovski, E.L. Bratkovskaya, W. Cassing, V.D. Toneev, S.A. Voloshin, V. Voronyuk, Phys. Rev. C 85, 044922 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    R.S. Bhalerao, J.P. Blaizot, N. Borghini, J.Y. Ollitrault, Phys. Lett. B 627, 49 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sudhir Pandurang Rode
    • 1
    Email author
  • Partha Pratim Bhaduri
    • 2
  • Ankhi Roy
    • 1
  1. 1.Discipline of Physics, School of Basic SciencesIndian Institute of Technology IndoreIndoreIndia
  2. 2.Variable Energy Cyclotron CentreHBNIKolkataIndia

Personalised recommendations