Nuclear excitations within microscopic EDF approaches: Pairing and temperature effects on the dipole response

  • E. Yüksel
  • G. Colò
  • E. KhanEmail author
  • Y. F. Niu
Regular Article - Theoretical Physics
Part of the following topical collections:
  1. Giant, Pygmy, Pairing Resonances and Related Topics


In the present work, the isovector dipole responses, both in the resonance region and in the low-energy sector, are investigated using the microscopic nuclear Energy Density Functionals (EDFs). The self-consistent QRPA model based on Skyrme Hartree Fock BCS approach is applied to study the evolution of the isovector dipole strength by increasing neutron number and temperature. First, the isovector dipole strength and excitation energies are investigated for the Ni isotopic chain at zero temperature. The evolution of the low-energy dipole strength is studied as a function of the neutron number. In the second part, the temperature dependence of the isovector dipole excitations is studied using the self-consistent finite temperature QRPA, below and above the critical temperatures. It is shown that new excited states become possible due to the thermally occupied states above the Fermi level, and opening of the new excitations channels. In addition, temperature leads to fragmentation of the low-energy strength around the neutron separation energies, and between 9 and 12 MeV. We find that the cumulative sum of the strength below \( E\leq 12\) MeV decreases in open-shell nuclei due to the vanishing of the pairing correlations as temperature increases up to \( T=1\) MeV. The analysis of the transition densities in the low-energy region shows that the proton and neutron transition densities display a mixed pattern: both isoscalar and isovector motion of protons and neutrons are obtained inside nuclei, while the neutron transition density is dominant at the surface region.


  1. 1.
    W. Bethe, W. Gentner, Z. Phys. 106, 236 (1937)ADSGoogle Scholar
  2. 2.
    M. Goldhaber, E. Teller, Phys. Rev. 74, 1046 (1948)ADSGoogle Scholar
  3. 3.
    H. Steinwedel, J.H.D. Jensen, Z. Naturf. 5a, 413 (1950)ADSGoogle Scholar
  4. 4.
    N. Paar, D. Vretenar, E. Khan, G. Colò, Rep. Prog. Phys. 70, 691 (2007)ADSGoogle Scholar
  5. 5.
    D. Savran, T. Aumann, A. Zilges, Prog. Part. Nucl. Phys. 70, 210 (2013)ADSGoogle Scholar
  6. 6.
    A. Bracco, F.C.L. Crespi, E.G. Lanza, Eur. Phys. J. A 51, 99 (2015)ADSGoogle Scholar
  7. 7.
    E. Yüksel, E. Khan, K. Bozkurt, Nucl. Phys. A 877, 35 (2012)ADSGoogle Scholar
  8. 8.
    X. Roca-Maza, G. Pozzi, M. Brenna, K. Mizuyama, G. Colò, Phys. Rev. C 85, 024601 (2012)ADSGoogle Scholar
  9. 9.
    D. Vretenar, Y.F. Niu, N. Paar, J. Meng, Phys. Rev. C 85, 044317 (2012)ADSGoogle Scholar
  10. 10.
    J. Piekarewicz, Phys. Rev. C 83, 034319 (2011)ADSGoogle Scholar
  11. 11.
    A. Carbone, G. Colò, A. Bracco, L.-G. Cao, P.F. Bortignon, F. Camera, O. Wieland, Phys. Rev. C 81, 041301 (2010)ADSGoogle Scholar
  12. 12.
    V. Baran, M. Colonna, M. Di Toro, A. Croitoru, D. Dumitru, Phys. Rev. C 88, 044610 (2013)ADSGoogle Scholar
  13. 13.
    A. Klimkiewicz et al., Phys. Rev. C 76, 051603(R) (2007)ADSGoogle Scholar
  14. 14.
    V. Baran, B. Frecus, M. Colonna, M. Di Toro, Phys. Rev. C 85, 051601(R) (2012)ADSGoogle Scholar
  15. 15.
    S. Goriely, E. Khan, Nucl. Phys. A 706, 217 (2002)ADSGoogle Scholar
  16. 16.
    E. Litvinova et al., Nucl. Phys. A 823, 26 (2009)ADSGoogle Scholar
  17. 17.
    P.F. Bortignon, A. Bracco, R.A. Broglia, Giant Resonances: Nuclear Structure at Finite Temperature (Harwood Academic Publishers, 1998)Google Scholar
  18. 18.
    A. Bracco et al., Phys. Rev. Lett. 62, 2080 (1989)ADSGoogle Scholar
  19. 19.
    E. Ramakrishnan et al., Phys. Rev. Lett. 76, 2025 (1996)ADSGoogle Scholar
  20. 20.
    T. Baumann et al., Nucl. Phys. A 635, 428 (1998)ADSGoogle Scholar
  21. 21.
    M.P. Kelly, K.A. Snover, J.P.S. van Schagen, M. Kicinska-Habior, Z. Trznadel, Nucl. Phys. A 649, 123 (1999)ADSGoogle Scholar
  22. 22.
    M.P. Kelly, K.A. Snover, J.P.S. van Schagen, M. Kicinska-Habior, Z. Trznadel, Phys. Rev. Lett. 82, 3404 (1999)ADSGoogle Scholar
  23. 23.
    P. Heckman et al., Phys. Lett. B 555, 43 (2003)ADSGoogle Scholar
  24. 24.
    O. Wieland et al., Phys. Rev. Lett. 97, 012501 (2006)ADSGoogle Scholar
  25. 25.
    S. Mukhopadhyay et al., Phys. Lett. B 709, 9 (2012)ADSGoogle Scholar
  26. 26.
    D. Pandit et al., Phys. Lett. B 713, 434 (2012)ADSGoogle Scholar
  27. 27.
    D. Mondal et al., Phys. Lett. B 784, 423 (2018)ADSGoogle Scholar
  28. 28.
    D. Santonocito, Y. Blumenfeld, Eur. Phys. J. A 30, 183 (2006)ADSGoogle Scholar
  29. 29.
    O. Civitarese, R.A. Broglia, C.H. Dasso, Ann. Phys. 156, 142 (1984)ADSGoogle Scholar
  30. 30.
    D. Vautherin, N. Vinh Mau, Nucl. Phys. A 422, 140 (1984)ADSGoogle Scholar
  31. 31.
    W. Besold, P.-G. Reinhard, C. Toepffer, Nucl. Phys. A 431, 1 (1984)ADSGoogle Scholar
  32. 32.
    H. Sagawa, G.F. Bertsch, Phys. Lett. B 146, 138 (1984)ADSGoogle Scholar
  33. 33.
    Y.F. Niu, N. Paar, D. Vretenar, J. Meng, Phys. Lett. B 681, 315 (2009)ADSGoogle Scholar
  34. 34.
    E. Khan, N. Van Giai, M. Grasso, Nucl. Phys. A 731, 311 (2004)ADSGoogle Scholar
  35. 35.
    E. Yüksel, G. Colò, E. Khan, Y.F. Niu, K. Bozkurt, Phys. Rev. C 96, 024303 (2017)ADSGoogle Scholar
  36. 36.
    E. Litvinova, H. Wibowo, Phys. Rev. Lett. 121, 082501 (2018)ADSGoogle Scholar
  37. 37.
    E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 635, 231 (1998)ADSGoogle Scholar
  38. 38.
    P.G. Reinhard, H. Flocard, Nucl. Phys. A 584, 467 (1995)ADSGoogle Scholar
  39. 39.
    A.L. Goodman, Nucl. Phys. A 352, 30 (1981)ADSGoogle Scholar
  40. 40.
    E. Yüksel, E. Khan, K. Bozkurt, G. Colò, Eur. Phys. J. A 50, 160 (2014)ADSGoogle Scholar
  41. 41.
    G.F. Bertsch, H. Esbensen, Ann. Phys. 209, 327 (1991)ADSGoogle Scholar
  42. 42.
    W. Satula, J. Dobaczewski, W. Nazarewicz, Phys. Rev. Lett. 81, 3599 (1998)ADSGoogle Scholar
  43. 43.
    Y.F. Niu, Z.M. Niu, N. Paar, D. Vretenar, G.H. Wang, Phys. Rev. C 88, 034308 (2013)ADSGoogle Scholar
  44. 44.
    D. Gambacurta, D. Lacroix, N. Sandulescu, Phys. Rev. C 88, 034324 (2013)ADSGoogle Scholar
  45. 45.
    N.D. Dang, Phys. Rev. C 76, 064320 (2007)ADSGoogle Scholar
  46. 46.
    N.D. Dang, P. Ring, R. Rossignoli, Phys. Rev. C 47, 606 (1993)ADSGoogle Scholar
  47. 47.
    A.L. Goodman, Phys. Rev. C 29, 1887 (1984)ADSMathSciNetGoogle Scholar
  48. 48.
    Y. Alhassid, B. Bush, S. Levit, Phys. Rev. Lett. 61, 1926 (1988)ADSGoogle Scholar
  49. 49.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980)Google Scholar
  50. 50.
    E. Yüksel, G. Colò, E. Khan, Y.F. Niu, Phys. Rev. C 97, 064308 (2018)ADSGoogle Scholar
  51. 51.
    H.M. Sommermann, Ann. Phys. 151, 163 (1983)ADSGoogle Scholar
  52. 52.
    O. Wieland et al., Phys. Rev. Lett. 102, 092502 (2009)ADSGoogle Scholar
  53. 53.
    O. Wieland et al., Phys. Rev. C 98, 064313 (2018)ADSGoogle Scholar
  54. 54.
    D. Gambacurta, M. Grasso, F. Catara, Phys. Rev. C 84, 034301 (2011)ADSGoogle Scholar
  55. 55.
    E. Litvinova, P. Ring, D. Vretenar, Phys. Lett. B 647, 111 (2007)ADSGoogle Scholar
  56. 56.
    X. Roca-Maza, Y.F. Niu, G. Colò, P.F. Bortignon, J. Phys. G: Nucl. Part. Phys. 44, 044001 (2017)ADSGoogle Scholar
  57. 57.
    Y.F. Niu, G. Colò, E. Vigezzi, C.L. Bai, H. Sagawa, Phys. Rev. C 94, 064328 (2016)ADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsYildiz Technical UniversityEsenler, IstanbulTurkey
  2. 2.Dipartimento di FisicaUniversità degli Studi di MilanoMilanoItaly
  3. 3.INFN, Sezione di MilanoMilanoItaly
  4. 4.Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, Université Paris-SaclayOrsay CedexFrance
  5. 5.School of Nuclear Science and TechnologyLanzhou UniversityLanzhouChina
  6. 6.ELI-NP, Horia Hulubei National Institute for Physics and Nuclear EngineeringBucharest-MagureleRomania

Personalised recommendations