Advertisement

An iterative method to estimate the combinatorial background

  • Georgy KornakovEmail author
  • Tetyana Galatyuk
Regular Article - Experimental Physics
  • 8 Downloads

Abstract.

The reconstruction of broad resonances is important for understanding the dynamics of heavy ion collisions. However, the large combinatorial background makes this objective very challenging. In this work an innovative iterative method which identifies signal and background contributions without input models for normalization constants is presented. This technique is successfully validated on a simulated thermal cocktail of resonances. This demonstrates that the iterative procedure is a powerful tool to reconstruct multi-differentially inclusive resonant signals in high multiplicity events as produced in heavy ion collisions.

References

  1. 1.
    F. James, CERN-68-15Google Scholar
  2. 2.
    S. Constantinescu, S. Dita, D. Jouan, Report PNO-DER-96-01 (1996)Google Scholar
  3. 3.
    M. Gazdzicki, M.I. Gorenstein, arXiv:hep-ph/0003319Google Scholar
  4. 4.
    NA38 and NA50 Collaborations (M.C. Abreu et al.), Eur. Phys. J. C 14, 443 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 81, 034911 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 92, 092301 (2004)CrossRefGoogle Scholar
  7. 7.
    N. van Eijndhoven, W. Wetzels, Nucl. Instrum. Methods A 482, 513 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    G.I. Kopylov, Phys. Lett. B 50, 472 (1974)ADSCrossRefGoogle Scholar
  9. 9.
    P.D. Higgins et al., Phys. Rev. D 19, 65 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    D. L’Hôte, Nucl. Instrum. Methods A 337, 544 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    M. Kaskulov, E. Hernández, E. Oset, Eur. Phys. J. A 46, 223 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    G. Jancso et al., Nucl. Phys. B 124, 1 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    A. Breakstone et al., Z. Phys. C 21, 321 (1984)ADSCrossRefGoogle Scholar
  14. 14.
    D. Drijard, H.G. Fischer, T. Nakada, Nucl. Instrum. Methods A 225, 367 (1984)CrossRefGoogle Scholar
  15. 15.
    M. Trzaska et al., Z. Phys. A 340, 325 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    M. Eskef and the FOPI Collaboration, Eur. Phys. J. A 3, 335 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    P. Crochet, P. Braun-Munzinger, Nucl. Instrum. Methods A 484, 564 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    NA60 Collaboration (R. Arnaldi et al.), Phys. Rev. Lett. 96, 162302 (2006)CrossRefGoogle Scholar
  19. 19.
    STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 79, 064903 (2009)CrossRefGoogle Scholar
  20. 20.
    D.C. Radford, I. Ahmad, R. Holzmann, R.V.F. Janssens, T.L. Khoo, Nucl. Instrum. Methods A 258, 111 (1987)ADSCrossRefGoogle Scholar
  21. 21.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 95, 122301 (2005)CrossRefGoogle Scholar
  22. 22.
    STAR Collaboration (B.I. Abelev et al.), Science 328, 58 (2010)CrossRefGoogle Scholar
  23. 23.
    CERES Collaboration (D. Adamova et al.), Nucl. Phys. A 894, 41 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 712, 165 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    L. Landweber, Am. J. Math. 73, 615 (1951)MathSciNetCrossRefGoogle Scholar
  26. 26.
    O. Scherzer, J. Math. Anal. Appl. 194, 911 (1995)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Q. Jin, J. Math. Anal. Appl. 253, 187 (2001)MathSciNetCrossRefGoogle Scholar
  28. 28.
    I. Fröhlich et al., PoS ACAT, 076 (2007)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Wydział FizykiPolitechnika WarszawskaWarsawPoland
  3. 3.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany

Personalised recommendations