An iterative method to estimate the combinatorial background
Regular Article - Experimental Physics
First Online:
- 8 Downloads
Abstract.
The reconstruction of broad resonances is important for understanding the dynamics of heavy ion collisions. However, the large combinatorial background makes this objective very challenging. In this work an innovative iterative method which identifies signal and background contributions without input models for normalization constants is presented. This technique is successfully validated on a simulated thermal cocktail of resonances. This demonstrates that the iterative procedure is a powerful tool to reconstruct multi-differentially inclusive resonant signals in high multiplicity events as produced in heavy ion collisions.
References
- 1.F. James, CERN-68-15Google Scholar
- 2.S. Constantinescu, S. Dita, D. Jouan, Report PNO-DER-96-01 (1996)Google Scholar
- 3.M. Gazdzicki, M.I. Gorenstein, arXiv:hep-ph/0003319Google Scholar
- 4.NA38 and NA50 Collaborations (M.C. Abreu et al.), Eur. Phys. J. C 14, 443 (2000)ADSCrossRefGoogle Scholar
- 5.PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 81, 034911 (2010)ADSCrossRefGoogle Scholar
- 6.STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 92, 092301 (2004)CrossRefGoogle Scholar
- 7.N. van Eijndhoven, W. Wetzels, Nucl. Instrum. Methods A 482, 513 (2002)ADSCrossRefGoogle Scholar
- 8.G.I. Kopylov, Phys. Lett. B 50, 472 (1974)ADSCrossRefGoogle Scholar
- 9.P.D. Higgins et al., Phys. Rev. D 19, 65 (1979)ADSCrossRefGoogle Scholar
- 10.D. L’Hôte, Nucl. Instrum. Methods A 337, 544 (1994)ADSCrossRefGoogle Scholar
- 11.M. Kaskulov, E. Hernández, E. Oset, Eur. Phys. J. A 46, 223 (2010)ADSCrossRefGoogle Scholar
- 12.G. Jancso et al., Nucl. Phys. B 124, 1 (1977)ADSCrossRefGoogle Scholar
- 13.A. Breakstone et al., Z. Phys. C 21, 321 (1984)ADSCrossRefGoogle Scholar
- 14.D. Drijard, H.G. Fischer, T. Nakada, Nucl. Instrum. Methods A 225, 367 (1984)CrossRefGoogle Scholar
- 15.M. Trzaska et al., Z. Phys. A 340, 325 (1991)ADSCrossRefGoogle Scholar
- 16.M. Eskef and the FOPI Collaboration, Eur. Phys. J. A 3, 335 (1998)ADSCrossRefGoogle Scholar
- 17.P. Crochet, P. Braun-Munzinger, Nucl. Instrum. Methods A 484, 564 (2002)ADSCrossRefGoogle Scholar
- 18.NA60 Collaboration (R. Arnaldi et al.), Phys. Rev. Lett. 96, 162302 (2006)CrossRefGoogle Scholar
- 19.STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 79, 064903 (2009)CrossRefGoogle Scholar
- 20.D.C. Radford, I. Ahmad, R. Holzmann, R.V.F. Janssens, T.L. Khoo, Nucl. Instrum. Methods A 258, 111 (1987)ADSCrossRefGoogle Scholar
- 21.STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 95, 122301 (2005)CrossRefGoogle Scholar
- 22.STAR Collaboration (B.I. Abelev et al.), Science 328, 58 (2010)CrossRefGoogle Scholar
- 23.CERES Collaboration (D. Adamova et al.), Nucl. Phys. A 894, 41 (2012)ADSCrossRefGoogle Scholar
- 24.ALICE Collaboration (B. Abelev et al.), Phys. Lett. B 712, 165 (2012)ADSCrossRefGoogle Scholar
- 25.L. Landweber, Am. J. Math. 73, 615 (1951)MathSciNetCrossRefGoogle Scholar
- 26.O. Scherzer, J. Math. Anal. Appl. 194, 911 (1995)MathSciNetCrossRefGoogle Scholar
- 27.Q. Jin, J. Math. Anal. Appl. 253, 187 (2001)MathSciNetCrossRefGoogle Scholar
- 28.I. Fröhlich et al., PoS ACAT, 076 (2007)Google Scholar
Copyright information
© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019