Advertisement

Cross sections of the 10B(n,\(\alpha\))7Li two-body and 10B(n, t2\(\alpha\)) three-body reactions at 4.0, 4.5, and 5.0 MeV

  • Huaiyong Bai
  • Zhimin Wang
  • Haoyu Jiang
  • Zengqi Cui
  • Yiwei Hu
  • Jinxiang Chen
  • Guohui ZhangEmail author
  • Yu. M. Gledenov
  • M. V. Sedysheva
  • G. Khuukhenkhuu
Regular Article - Experimental Physics
  • 12 Downloads

Abstract.

The cross sections of the 10B(n,\(\alpha\))7Li two-body and 10B(n, t2\(\alpha\)) three-body reactions have been measured at \( E_{n} =4.0\), 4.5 and 5.0 MeV using a GIC (twin gridded ionization chamber) and an enriched thin-film 10B sample in 2017. The anode and grid signals of the GIC are used in the experiment. However, we found afterwards that better results can be obtained using the anode and cathode signals of the GIC. In the present work, Monte Carlo simulations of the measurement are performed. Then, the cathode signals are rebuilt using the anode and grid signals of the GIC. Finally, the experiment data are re-analyzed to obtain new results with smaller uncertainties especially for the 10B(n, t2\(\alpha\)) three-body reaction. The present results are compared with existing measurements and evaluations.

References

  1. 1.
  2. 2.
  3. 3.
    G. Zhang, G. Tang, J. Chen et al., Nucl. Sci. Eng. 142, 203 (2002)CrossRefGoogle Scholar
  4. 4.
    G. Zhang, L. Guo, R. Cao et al., Appl. Radiat. Isot. 66, 1427 (2008)CrossRefGoogle Scholar
  5. 5.
    G. Zhang, X. Liu, J. Liu et al., Chin. Phys. Lett. 28, 082801 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Wang, H. Bai, L. Zhang et al., Phys. Rev. C 96, 044621 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    H. Bai, H. Jiang, Y. Lu et al., Appl. Radiat. Isot. 152, 180 (2019)CrossRefGoogle Scholar
  8. 8.
    C. Ji, D. Huang, T. Wang et al., J. Isot. 28, 93 (2015)Google Scholar
  9. 9.
    Z. Wang, H. Bai, L. Zhang et al., Phys. Rev. C 96, 044620 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    A. Koning, S. Hilaire, S. Goriely, User Manual of TALYS-1.8 (Nuclear Research and Consultancy Group, Petten, 2015)Google Scholar
  11. 11.
    A. Göök, F.-J. Hambsch, A. Oberstedt et al., Nucl. Instrum. Methods Phys. Res. A 664, 289 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    G.G. Ohlsen, Nucl. Instrum. Methods 37, 240 (1965)ADSCrossRefGoogle Scholar
  13. 13.
    Evaluated Nuclear Data File, https://www-nds.iaea.org/exfor/endf.htm
  14. 14.
    G. Giorginis, V. Khryachkov, Nucl. Instrum. Methods Phys. Res. A 562, 737 (2006)ADSCrossRefGoogle Scholar
  15. 15.
  16. 16.
    S.M. Qaim, R. Wolfie, Nucl. Phys. A 295, 150 (1978)ADSCrossRefGoogle Scholar
  17. 17.
    A. Suhaimi, R. Wolfie, S.M. Qaim et al., Radiochim. Acta 40, 113 (1986)CrossRefGoogle Scholar
  18. 18.
    E.A. Davis, F. Gabbard, T.W. Bonner et al., Nucl. Phys. 27, 448 (1961)CrossRefGoogle Scholar
  19. 19.
    T.A. Ivanova, I.P. Bondarenko, B.D. Kuzminov et al., Bull. Russ. Acad. Sci.: Phys. 77, 455 (2013)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Huaiyong Bai
    • 1
    • 2
  • Zhimin Wang
    • 1
    • 3
  • Haoyu Jiang
    • 1
  • Zengqi Cui
    • 1
  • Yiwei Hu
    • 1
  • Jinxiang Chen
    • 1
  • Guohui Zhang
    • 1
    Email author
  • Yu. M. Gledenov
    • 4
  • M. V. Sedysheva
    • 4
  • G. Khuukhenkhuu
    • 5
  1. 1.State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of physicsPeking UniversityBeijingChina
  2. 2.Institute of MaterialsChina Academy of Engineering PhysicsJiangyouChina
  3. 3.Department of Physics, School of Information Science and EngineeringOcean University of ChinaQingdaoChina
  4. 4.Frank Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  5. 5.Nuclear Research CentreNational University of MongoliaUlaanbaatarMongolia

Personalised recommendations