Advertisement

Thermomagnetic properties and Bjorken expansion of hot QCD matter in a strong magnetic field

  • Shubhalaxmi RathEmail author
  • Binoy Krishna Patra
Regular Article - Theoretical Physics
  • 19 Downloads

Abstract.

In this work we have explored the effect of a strong homogeneous magnetic field on the thermodynamic and magnetic properties of hot QCD matter, which is in turn used in the form of equation of state to explore the effect of the same on the hydrodynamic expansion of the matter produced in the ultrarelativistic heavy ion collisions. For that purpose, we have first computed the quark and gluon contributions to the free energy up to one loop in the strong magnetic field in hard thermal loop approximation with two hard scales, temperature and magnetic field for gluon and quark degrees of freedom, respectively, and we have found that the speed of sound gets enhanced due to the presence of a strong magnetic field. Secondly, we have studied the magnetic properties of the matter, where magnetization is found to increase linearly with the magnetic field, implying paramagnetic nature, whereas magnetization is observed to increase slowly with temperature. Finally, we have studied the hydrodynamic evolution of matter in the Bjorken boost-invariant picture with the above-mentioned paramagnetic equation of state as an input and have noticed that energy density evolves faster than the one in the absence of a strong magnetic field, i.e. cooling becomes faster, which is a clear manifestation of the enhancement of the speed of sound. This observation could have implications on the heavy-ion phenomenology, viz. dilepton and photon productions at the early stages of the collisions.

References

  1. 1.
    K. Tuchin, Phys. Rev. C 83, 017901 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    K. Fukushima, J.M. Pawlowski, Phys. Rev. D 86, 076013 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    G.S. Bali, F. Bruckmann, G. Endrődi, S.D. Katz, A. Schäfer, JHEP 08, 177 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    G. Endrődi, JHEP 07, 173 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    J.O. Andersen, W.R. Naylor, A. Tranberg, Rev. Mod. Phys. 88, 025001 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    H. van Hees, C. Gale, R. Rapp, Phys. Rev. C 84, 054906 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    C. Shen, U.W. Heinz, J.-F. Paquet, C. Gale, Phys. Rev. C 89, 044910 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    K. Tuchin, Phys. Rev. C 88, 024910 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    K.A. Mamo, JHEP 08, 083 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    R.K. Mohapatra, P.S. Saumia, A.M. Srivastava, Mod. Phys. Lett. A 26, 2477 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    V. Braguta, M.N. Chernodub, V.A. Goy, K. Landsteiner, A.V. Molochkov, M.I. Polikarpov, Phys. Rev. D 89, 074510 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    M.N. Chernodub, A. Cortijo, A.G. Grushin, K. Landsteiner, M.A.H. Vozmediano, Phys. Rev. B 89, 081407(R) (2014)ADSCrossRefGoogle Scholar
  15. 15.
    D.E. Kharzeev, Dam T. Son, Phys. Rev. Lett. 106, 062301 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    N. Mueller, J.M. Pawlowski, Phys. Rev. D 91, 116010 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Rev. Lett. 73, 3499 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    A. Haber, F. Preis, A. Schmitt, Phys. Rev. D 90, 125036 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    M. Strickland, V. Dexheimer, D.P. Menezes, Phys. Rev. D 86, 125032 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    G. Basar, D. Kharzeev, D. Kharzeev, V. Skokov, Phys. Rev. Lett. 109, 202303 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    A. Ayala, J.D. Castano-Yepes, C.A. Dominguez, L.A. Hernandez, EPJ Web of Conferences 141, 02007 (2017)CrossRefGoogle Scholar
  22. 22.
    J.C. D’Olivo, J.F. Nieves, S. Sahu, Phys. Rev. D 67, 025018 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    A.K. Ganguly, S. Konar, P.B. Pal, Phys. Rev. D 60, 105014 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    K. Tuchin, Phys. Rev. C 87, 024912 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    D.N. Kabat, K.-M. Lee, E.J. Weinberg, Phys. Rev. D 66, 014004 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    O. Bergman, G. Lifschytz, M. Lippert, JHEP 05, 007 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    K. Sato, T. Tatsumi, Prog. Theor. Phys. Suppl. 174, 177 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    T. Steinert, W. Cassing, Phys. Rev. C 89, 035203 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    A.N. Tawfik, N. Magdy, Phys. Rev. C 90, 015204 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    K. Kamikado, T. Kanazawa, JHEP 01, 129 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    S. Rath, B.K. Patra, JHEP 12, 098 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    U. Gürsoy, D. Kharzeev, K. Rajagopal, Phys. Rev. C 89, 054905 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    V. Roy, S. Pu, Phys. Rev. C 92, 064902 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Hirono, T. Hirano, D.E. Kharzeev, arXiv:1412.0311 [hep-ph]Google Scholar
  35. 35.
    Long-Gang Pang, Gergely Endrődi, Hannah Petersen, Phys. Rev. C 93, 044919 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    V. Roy, S. Pu, L. Rezzolla, D.H. Rischke, Phys. Rev. C 96, 054909 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    S. Pu, V. Roy, L. Rezzolla, D.H. Rischke, Phys. Rev. D 93, 074022 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    J. Schwinger, Phys. Rev. 82, 664 (1951)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Wu-yang Tsai, Phys. Rev. D 10, 2699 (1974)ADSCrossRefGoogle Scholar
  40. 40.
    E.J. Ferrer, V. de la Incera, X.J. Wen, Phys. Rev. D 91, 054006 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    M.A. Andreichikov, V.D. Orlovsky, Yu.A. Simonov, Phys. Rev. Lett. 110, 162002 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    V.P. Gusynin, A.V. Smilga, Phys. Lett. B 450, 267 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    E. Braaten, R.D. Pisarski, Phys. Rev. Lett. 64, 1338 (1990)ADSCrossRefGoogle Scholar
  44. 44.
    E. Braaten, R.D. Pisarski, Phys. Rev. D 42, 2156 (1990)ADSCrossRefGoogle Scholar
  45. 45.
    R. Kobes, G. Kunstatter, K. Mak, Phys. Rev. D 45, 4632 (1992)ADSCrossRefGoogle Scholar
  46. 46.
    K. Hattori, D. Satow, Phys. Rev. D 97, 014023 (2018)ADSCrossRefGoogle Scholar
  47. 47.
    K. Hattori, K. Itakura, Ann. Phys. 330, 23 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    A. Ayala, C.A. Dominguez, S. Hernandez-Ortiz, L.A. Hernandez, M. Loewe, D.M. Paret, R. Zamora, arXiv:1805.07344 [hep-ph]Google Scholar
  49. 49.
    A. Ayala, C.A. Dominguez, S. Hernandez-Ortiz, L.A. Hernandez, M. Loewe, D.M. Paret, R. Zamora, Phys. Rev. D 98, 031501 (2018)ADSCrossRefGoogle Scholar
  50. 50.
    A. Ayala, J.J. Cobos-Martínez, M. Loewe, M.E. Tejeda-Yeomans, R. Zamora, Phys. Rev. D 91, 016007 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    A. Bandyopadhyay, B. Karmakar, N. Haque, M.G. Mustafa, arXiv:1702.02875 [hep-ph]Google Scholar
  52. 52.
    B. Karmakar, A. Bandyopadhyay, N. Haque, M.G. Mustafa, arXiv:1804.11336 [hep-ph]Google Scholar
  53. 53.
    A. Bandyopadhyay, C.A. Islam, M.G. Mustafa, Phys. Rev. D 94, 114034 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    B. Karmakar, R. Ghosh, A. Bandyopadhyay, N. Haque, M.G. Mustafa, Phys. Rev. D 99, 094002 (2019)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    J.O. Andersen, E. Braaten, E. Petitgirard, M. Strickland, Phys. Rev. D 66, 085016 (2002)ADSCrossRefGoogle Scholar
  56. 56.
    D.P. Menezes, M.B. Pinto, S.S. Avancini, C. Providência, Phys. Rev. C 80, 065805 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    S.S. Avancini, D.P. Menezes, C. Providência, Phys. Rev. C 83, 065805 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    N. Magdy, M. Csanád, R.A. Lacey, arXiv:1510.04380 [nucl-th]Google Scholar
  59. 59.
    P. Yue, H. Shen, Phys. Rev. C 77, 045804 (2008)ADSCrossRefGoogle Scholar
  60. 60.
    G.S. Bali, F. Bruckmann, G. Endrődi, A. Schäfer, Phys. Rev. Lett. 112, 042301 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    C. Bonati, M. D’Elia, M. Mariti, F. Negro, F. Sanfilippo, Phys. Rev. D 89, 054506 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    L. Levkova, C. DeTar, Phys. Rev. Lett. 112, 012002 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    G. Endrődi, JHEP 04, 023 (2013)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    V.D. Orlovsky, Yu.A. Simonov, Int. J. Mod. Phys. A 30, 1550060 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    B.-J. Schaefer, M. Wagner, J. Wambach, PoS CPOD2009, 017 (2009)Google Scholar
  66. 66.
    V. Koch, J. Phys. G: Nucl. Part. Phys. 35, 104030 (2008)ADSCrossRefGoogle Scholar
  67. 67.
    Min He, Yu Jiang, Wei-Min Sun, Hong-Shi Zong, Phys. Rev. D 77, 076008 (2008)ADSCrossRefGoogle Scholar
  68. 68.
    Lei Chang, Yu-xin Liu, Craig D. Roberts, Yuan-mei Shi, Wei-min Sun, Hong-shi Zong, Phys. Rev. C 79, 035209 (2009)ADSCrossRefGoogle Scholar
  69. 69.
    K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013)MathSciNetCrossRefGoogle Scholar
  70. 70.
    S. Rath, B.K. Patra, Phys. Rev. D 100, 016009 (2019)ADSCrossRefGoogle Scholar
  71. 71.
    R.C. Hwa, Phys. Rev. D 10, 2260 (1974)ADSCrossRefGoogle Scholar
  72. 72.
    M.I. Gorenstein, Y.M. Sinjukov, V.I. Zhdanov, Phys. Lett. B 71, 199 (1977)ADSCrossRefGoogle Scholar
  73. 73.
    J.D. Bjorken, Phys. Rev. D 27, 140 (1983)ADSCrossRefGoogle Scholar
  74. 74.
    Jean-Y. Ollitrault, Eur. J. Phys. 29, 275 (2008)CrossRefGoogle Scholar
  75. 75.
    T. Csörgő, G. Kasza, M. Csanád, Z.F. Jiang, Acta Phys. Pol. B 50, 27 (2019)ADSCrossRefGoogle Scholar
  76. 76.
    G. Kasza, T. Csörgő, Acta Phys. Pol. B Proc. Suppl. 12, 175 (2019)CrossRefGoogle Scholar
  77. 77.
    T. Csörgő, G. Kasza, Acta Phys. Pol. B Proc. Suppl. 12, 217 (2019)CrossRefGoogle Scholar
  78. 78.
    H. Kouno, M. Maruyama, F. Takagi, K. Saito, Phys. Rev. D 41, 2903 (1990)ADSCrossRefGoogle Scholar
  79. 79.
    K. Kajantie, Nucl. Phys. A 418, 41 (1984)ADSCrossRefGoogle Scholar
  80. 80.
    G. Baym, Nucl. Phys. A 418, 525 (1984)ADSCrossRefGoogle Scholar
  81. 81.
    A. Hosoya, K. Kajantie, Nucl. Phys. B 250, 666 (1985)ADSCrossRefGoogle Scholar
  82. 82.
    P. Danielewicz, M. Gyulassy, Phys. Rev. D 31, 53 (1985)ADSCrossRefGoogle Scholar
  83. 83.
    A. Muronga, Phys. Rev. Lett. 88, 062302 (2002)ADSCrossRefGoogle Scholar
  84. 84.
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (J. Wiley and Sons, New York, 1972)Google Scholar
  85. 85.
    W. Israel, J.M. Stewart, Ann. Phys. 118, 341 (1979)ADSCrossRefGoogle Scholar
  86. 86.
    R. Baier, P. Romatschke, U.A. Wiedemann, Phys. Rev. C 73, 064903 (2006)ADSCrossRefGoogle Scholar
  87. 87.
    U. Kakade, B.K. Patra, L. Thakur, Int. J. Mod. Phys. A 30, 1550043 (2015)ADSCrossRefGoogle Scholar
  88. 88.
    P. Kovtun, D. Son, A. Starinets, Phys. Rev. Lett. 94, 111601 (2005)ADSCrossRefGoogle Scholar
  89. 89.
    P. Arnold, G.D. Moore, L.G. Yaffe, JHEP 11, 001 (2000)ADSCrossRefGoogle Scholar
  90. 90.
    A. Kisiel, W. Broniowski, M. Chojnacki, W. Florkowski, Phys. Rev. C 79, 014902 (2009)ADSCrossRefGoogle Scholar
  91. 91.
    L. Dolan, R. Jackiw, Phys. Rev. D 9, 3320 (1974)ADSCrossRefGoogle Scholar
  92. 92.
    K. Fukushima, K. Hattori, H.-U. Yee, Y. Yin, Phys. Rev. D 93, 074028 (2016)ADSCrossRefGoogle Scholar
  93. 93.
    M. Hasan, B. Chatterjee, B.K. Patra, Eur. Phys. J. C 77, 767 (2017)ADSCrossRefGoogle Scholar
  94. 94.
    B. Singh, L. Thakur, H. Mishra, Phys. Rev. D 97, 096011 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations