Centrality and transverse momentum dependencies of hadrons in Pb+Pb collisions at \(\sqrt{s_{NN}} = 5.02\) TeV and Xe+Xe collisions at \(\sqrt{s_{NN}} = 5.44\) TeV from a multi-phase transport model

  • Lilin Zhu
  • Hua ZhengEmail author
  • Ruimin Kong
Regular Article - Theoretical Physics


In this paper, we study and predict the charged-particle pseudorapidity multiplicity density (\( \frac{\mathrm{d} N_{ch}}{\mathrm{d}\eta}\)), transverse momentum spectra of identified particles and their ratios in relativistic heavy ion collisions at the Large Hadron Collider (LHC), using the string-melting version of a multi-phase transport (AMPT) model with an improved quark coalescence method. We extend this improved AMPT model to the energy region available in the experiment and test its validity, in particular, by predicting the experimental observables. Results of the charged-particle pseudorapidity multiplicity density from AMPT model calculations for Pb+Pb collisions at \( \sqrt{s_{NN}}=5.02\) TeV are compared with the experimental data. Good agreements are generally found between the theoretical calculations and experimental data. But for Xe+Xe collisions at \( \sqrt{s_{NN}}=5.44\) TeV, the \( \frac{\mathrm{d} N_{ch}}{\mathrm{d}\eta}\) are systematically overestimated by 20% at different centralities with the same model parameters. We predict the \( p_T\) spectra of charged pions, kaons and protons as well as their ratios \( K/\pi\) and \( p/\pi\) at midrapidity (\( \vert y\vert < 0.5\)) in both Pb+Pb collisions at \( \sqrt{s_{NN}}=5.02\) TeV and Xe+Xe collisions at \( \sqrt{s_{NN}}=5.44\) TeV that are measured at LHC. The \( p_T\) spectra of identified particles in Pb+Pb collisions from the improved AMPT model are compared and found to be consistent with results from the iEBE-VISHNU hybrid model with TRENTo initial condition.


  1. 1.
    STAR Collaboration (M.M. Aggarwal et al.), Phys. Rev. C 83, 024901 (2011)CrossRefGoogle Scholar
  2. 2.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 101, 162301 (2008)CrossRefGoogle Scholar
  3. 3.
    B.I. Abelev, M.M. Aggarwal, Z. Ahammed et al., Phys. Rev. Lett. 97, 152301 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    ALICE Collaboration (J. Adam et al.), Phys. Rev. C 93, 034913 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    ALICE Collaboration (J. Adam et al.), Phys. Lett. B 772, 567 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    ALICE Collaboration (S. Acharya et al.), Phys. Lett. B 788, 166 (2019)ADSCrossRefGoogle Scholar
  7. 7.
    W. Zhao, H.J. Xu, H. Song, Eur. Phys. J. C 77, 645 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    W. Zhao, L. Zhu, H. Zheng, C.M. Ko, H. Song, Phys. Rev. C 98, 054905 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    W. Zhao, Y. Zhou, H. Xu, W. Deng, H. Song, Phys. Lett. B 780, 495 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    P. Braun-Munzinger, K. Redlich, J. Stachel, Particle Production in Heavy Ion Collisions, in Quark-Gluon Plasma 3, edited by R.C. Hwa, X.-N. Wang (World Scientific, Singapore, 2004) p. 491CrossRefGoogle Scholar
  11. 11.
    G.L. Ma, Z.W. Lin, Phys. Rev. C 93, 054911 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Y. He, Z.W. Lin, Phys. Rev. C 96, 014910 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    V. Greco, C.M. Ko, P. Levai, Phys. Rev. Lett. 90, 202302 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    R.J. Fries, B. Müller, C. Nonaka, S.A. Bass, Phys. Rev. Lett. 90, 202303 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    R.C. Hwa, C.B. Yang, Phys. Rev. C 70, 024905 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    B. Zhang, C.M. Ko, B.A. Li, Z.w. Lin, Phys. Rev. C 61, 067901 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Z.w. Lin, S. Pal, C.M. Ko, B.A. Li, B. Zhang, Phys. Rev. C 64, 011902 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    L. Zhu, C.M. Ko, X. Yin, Phys. Rev. C 92, 064911 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    ALICE Collaboration (S. Acharya et al.), Phys. Lett. B 790, 35 (2019)ADSCrossRefGoogle Scholar
  21. 21.
    ALICE Collaboration (S. Ragoni), PoS LHCP2018, 085 (2018)Google Scholar
  22. 22.
    G. Giacalone, J. Noronha-Hostler, M. Luzum, J.Y. Ollitrault, Phys. Rev. C 97, 034904 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    S. Tripathy, S. De, M. Younus, R. Sahoo, Phys. Rev. C 98, 064904 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, U. Heinz, Comput. Phys. Commun. 199, 61 (2016)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    K.J. Eskola, H. Niemi, R. Paatelainen, K. Tuominen, Phys. Rev. C 97, 034911 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    B.G. Zakharov, Eur. Phys. J. C 78, 427 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    X.N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    B.A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044909 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    S. Kundu, D. Mallick, B. Mohanty, Eur. Phys. J. A 55, 157 (2019)ADSCrossRefGoogle Scholar
  31. 31.
    J. Xu, C.M. Ko, Phys. Rev. C 83, 034904 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    ALICE Collaboration (S. Acharya et al.), JHEP 11, 013 (2018)ADSGoogle Scholar
  33. 33.
    H. Song, U.W. Heinz, Phys. Lett. B 658, 279 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    H. Song, PhD Thesis, The Ohio State University (August 2009) arXiv:0908.3656Google Scholar
  35. 35.
    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    M. Bleicher et al., J. Phys. G 25, 1859 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    X. Zhu, Y. Zhou, H. Xu, H. Song, Phys. Rev. C 95, 044902 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    H.J. Xu, Z. Li, H. Song, Phys. Rev. C 93, 064905 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    ALICE Collaboration (H. Beck), arXiv:1502.00848 [nucl-ex]Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsSichuan UniversityChengduChina
  2. 2.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina
  3. 3.Chengdu Experimental Foreign Languages SchoolChengduChina

Personalised recommendations