Skip to main content

Tetraneutron condensation in neutron rich matter

Abstract.

In this work we investigate the possible condensation of tetraneutron resonant states in the lower density neutron rich gas regions inside Neutron Stars (NSs). Using a relativistic density functional approach we characterize the system containing different hadronic species including, besides tetraneutrons, nucleons and a set of light clusters (3He, \( \alpha\) particles, deuterium and tritium). \( \sigma\), \( \omega\) and \( \rho\) mesonic fields provide the interaction in the nuclear system. We study how the tetraneutron presence could significantly impact the nucleon pairing fractions and the distribution of baryonic charge among species. For this we assume that they can be thermodynamically produced in an equilibrated medium and scan a range of coupling strengths to the mesonic fields from prescriptions based on isospin symmetry arguments. We find that tetraneutrons may appear over a range of densities belonging to the outer NS crust carrying a sizable amount of baryonic charge thus depleting the nucleon pairing fractions.

References

  1. 1

    F.M. Marqués et al., Phys. Rev. C 65, 044006 (2002)

    ADS  Google Scholar 

  2. 2

    S.A. Sofianos, S.A. Rakityansky, G.P. Vermaak, J. Phys. G 23, 1619 (1997)

    ADS  Google Scholar 

  3. 3

    C.A. Bertulani, V. Zelevinsky, J. Phys. G 29, 2431 (2003)

    ADS  Google Scholar 

  4. 4

    S.C. Pieper, Phys. Rev. Lett. 90, 252501 (2003)

    ADS  Google Scholar 

  5. 5

    N.K. Timofeyuk, J. Phys. G 29, L9 (2003)

    ADS  Google Scholar 

  6. 6

    L.V. Grigorenko, N.K. Timofeyuk, M.V. Zhukov, Eur. Phys. J. A 19, 187 (2004)

    ADS  Google Scholar 

  7. 7

    R. Lazauskas, J. Carbonell, Phys. Rev. C 72, 034003 (2005)

    ADS  Google Scholar 

  8. 8

    Yu.A. Lashko, G.F. Filippov, Phys. At. Nucl. 71, 209 (2008)

    Google Scholar 

  9. 9

    K. Kisamori et al., Phys. Rev. Lett. 116, 052501 (2016)

    ADS  Google Scholar 

  10. 10

    A.M. Shirokov et al., Phys. Rev. Lett. 117, 182502 (2016)

    ADS  Google Scholar 

  11. 11

    K. Fossez, J. Rotureau, N. Michel, M. Ploszajczak, Phys. Rev. Lett. 119, 032501 (2017)

    ADS  Google Scholar 

  12. 12

    E. Hiyama, R. Lazauskas, J. Carbonell, M. Kamimura, Phys. Rev. C 93, 044004 (2016)

    ADS  Google Scholar 

  13. 13

    C.A. Bertulani, V. Zelevinsky, Nature 532, 7600 (2016)

    Google Scholar 

  14. 14

    S. Typel, G. Röpke, T. Klahn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81, 015803 (2010)

    ADS  Google Scholar 

  15. 15

    M. Ferreira, C. Providencia, Phys. Rev. C 85, 055811 (2012)

    ADS  Google Scholar 

  16. 16

    S.S. Avancini, M. Ferreira, H. Pais, C. Providencia, G. Röpke, Phys. Rev. C 95, 045804 (2017)

    ADS  Google Scholar 

  17. 17

    H. Pais, F. Gulminelli, C. Providencia, G. Röpke, Phys. Rev. C 97, 045805 (2018)

    ADS  Google Scholar 

  18. 18

    A. Faessler, A.J. Buchmann, M.I. Krivoruchenko, Phys. Lett. B 391, 255 (1997)

    ADS  Google Scholar 

  19. 19

    N.K. Glendenning, J. Schaffner-Bielich, Phys. Rev. C 58, 1298 (1998)

    ADS  Google Scholar 

  20. 20

    B.J. Cai, F.J. Fattoyev, B.-A. Li, W.G. Newton, Phys. Rev. C 92, 015802 (2015)

    ADS  Google Scholar 

  21. 21

    J.J. Li, A. Sedrakian, Astrophys. J. Lett. 874, L22 (2019)

    ADS  Google Scholar 

  22. 22

    J.J. Li, A. Sedrakian, F. Weber, Phys. Lett. B 783, 234 (2018)

    ADS  Google Scholar 

  23. 23

    E.E. Kolomeitsev, K.A. Maslov, D.N. Voskresensky, Nucl. Phys. A 961, 106 (2017)

    ADS  Google Scholar 

  24. 24

    H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Nucl. Phys. A 637, 435 (1998)

    ADS  Google Scholar 

  25. 25

    M. Baldo, G.F. Burgio, M. Centelles, B.K. Sharma, X. Vinas, Phys. At. Nucl. 77, 1157 (2014)

    Google Scholar 

  26. 26

    C. Horowitz, M. Angeles Pérez García, D.K. Berry, J. Pieckarewiz, Phys. Rev. C 72, 035801 (2005)

    ADS  Google Scholar 

  27. 27

    M. Angeles Pérez García, J. Díaz Alonso, N. Corte, L. Mornas, J.P. Suárez, Nucl. Phys. A 699, 939 (2002)

    ADS  Google Scholar 

  28. 28

    V.M. Kuksa, Phys. Part. At. Nucl. 45, 3 (2014)

    Google Scholar 

  29. 29

    A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006) and references therein

    ADS  Google Scholar 

  30. 30

    K.A. Bugaev et al., Nucl. Phys. A 970, 133 (2018)

    ADS  Google Scholar 

  31. 31

    K. Sumiyoshi, H. Kuwabara, H. Toki, Nucl. Phys. A 581, 725 (1995)

    ADS  Google Scholar 

  32. 32

    M.A. Perez-Garcia, C. Providencia, A. Rabhi, Phys. Rev. C 84, 045803 (2011)

    ADS  Google Scholar 

  33. 33

    M.A. Perez-Garcia, Phys. Rev. C 80, 045804 (2009)

    ADS  Google Scholar 

  34. 34

    A. Deltuva, Phys. Lett. B 782, 238 (2018)

    ADS  Google Scholar 

  35. 35

    P. Grassberger, W. Sandhas, Nucl. Phys. B 2, 181 (1967)

    ADS  Google Scholar 

  36. 36

    E.O. Alt, P. Grassberger, W. Sandhas, JINR report E4-6688 (1972)

  37. 37

    M. Beyer, S.A. Sofianos, C. Kuhrts, G. Roepke, P. Schuck, Phys. Lett. B 488, 247 (2000)

    ADS  Google Scholar 

  38. 38

    N.K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity, 2nd edition (Springer-Verlag, New York, 2000)

    MATH  Google Scholar 

  39. 39

    M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich, N. Schunck, M.V. Stoitsov, S. Wild, Phys. Rev. Rev. C 82, 024313 (2010)

    ADS  Google Scholar 

  40. 40

    M.B. Tsang, Yingxun Zhang, P. Danielewicz, M. Famiano, Zhuxia Li, W.G. Lynch, A.W. Steiner, Phys. Rev. Lett. 102, 122701 (2009)

    ADS  Google Scholar 

  41. 41

    P. Danielewicz, J. Lee, Nucl. Phys. A 922, 1 (2014)

    ADS  Google Scholar 

  42. 42

    K. Hagel et al., Phys. Rev. Lett. 108, 062702 (2012)

    ADS  Google Scholar 

  43. 43

    D.H. Rischke, M.I. Gorenstein, H. Stöcker, W. Greiner, Z. Phys. C 51, 485 (1991)

    Google Scholar 

  44. 44

    J. Kapusta, Finite temperature field theory (Cambridge University Press, Cambridge, 1989)

  45. 45

    E. Oset, L.L. Salcedo, Nucl. Phys. A 468, 631 (1987)

    ADS  Google Scholar 

  46. 46

    C.A. Bertulani, V. Zelevinsky, Nature 532, 448 (2016)

    ADS  Google Scholar 

  47. 47

    H. Kucharek, P. Ring, Z. Phys. A 23, 339 (1991)

    Google Scholar 

  48. 48

    A. Sedrakian, J.W. Clark, Nuclear Superconductivity in Compact Stars: BCS Theory and Beyond, in Pairing in Fermionic Systems: Basic Concepts and Modern Applications, edited by A. Sedrakian, J.W. Clark, M. Alford (World Scientific, 2006) arXiv:nucl-th/0607028

  49. 49

    U. Lombardo, H.-J. Schulze, Lect. Notes Phys. 578, 30 (2001)

    ADS  Google Scholar 

  50. 50

    P. Bozek, Phys. Rev. C 62, 054316 (2000)

    ADS  Google Scholar 

  51. 51

    D. Ding, A. Rios, W. Dickhoff et al., Phys. Rev. C 94, 025802 (2016)

    ADS  Google Scholar 

  52. 52

    R. Machleidt, Phys. Rev. C 63, 024001 (2001)

    ADS  Google Scholar 

  53. 53

    D.J. Dean, M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607 (2003)

    ADS  Google Scholar 

  54. 54

    M. Baldo, H.-J. Schulze, Phys. Rev. C 75, 025802 (2007)

    ADS  Google Scholar 

  55. 55

    X.H. Wu, S.B. Wang, A. Sedrakian, G. Ropke, J. Low Temp. Phys. 189, 133 (2017)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Ángeles Pérez-García.

Additional information

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by D.N. Voskresensky

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ivanytskyi, O., Ángeles Pérez-García, M. & Albertus, C. Tetraneutron condensation in neutron rich matter. Eur. Phys. J. A 55, 184 (2019). https://doi.org/10.1140/epja/i2019-12900-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12900-6