Advertisement

Gamma-decay from dipole vibrations: Probe for nuclear properties

  • A. Bracco
  • F. CameraEmail author
  • F. C. L. Crespi
  • B. Million
  • O. Wieland
Review
  • 21 Downloads
Part of the following topical collections:
  1. Giant, Pygmy, Pairing Resonances and Related Topics

Abstract.

A review of selected experimental works on the gamma-decay from the Giant and Pygmy Dipole Resonances is presented. The common feature of these experiments is that gamma-decay originates from dipole states populated using reactions induced by heavy ions. The focus is the investigation of dipole modes built on the ground and excited states. The major developments made during the years regarding the detection of high-energy gamma-rays are briefly discussed together with specific results concerning a chosen number of problems among those that were addressed by the theoretical works of P.F. Bortignon. They are: i) the dipole mode in the initial stages of reactions among heavy ions with different \( N/Z\) values for the target and projectile; ii) the problem of isospin symmetry in nuclei at finite temperature; iii) pygmy states far from stability; iv) the nature of the pygmy states.

References

  1. 1.
    P.F. Bortignon, A. Bracco, R.A. Broglia, Giant Resonances: Nuclear Structure at Finite Temperature (Harwood Academic Publishers, Australia, 1998)Google Scholar
  2. 2.
    J.O. Newton et al., Phys. Rev. Lett. 46, 1383 (1981)ADSGoogle Scholar
  3. 3.
    D.M. Brink, PhD Thesis, University of Oxford (1955) unpublishedGoogle Scholar
  4. 4.
    V.A. Plujko et al., At. Data Nucl. Data Tables 123, 1 (2018)ADSGoogle Scholar
  5. 5.
    M. Krzysiek et al., Nucl. Instrum. Methods A 916, 257 (2019)ADSGoogle Scholar
  6. 6.
    A. Bracco, E.G. Lanza, A. Tamii, Prog. Part. Nucl. Phys. 106, 360 (2019)ADSGoogle Scholar
  7. 7.
    A. Maj et al., Nucl. Phys. A 571, 185 (1994)ADSGoogle Scholar
  8. 8.
    O. Wieland et al., Phys. Rev. Lett. 97, 012501 (2006)ADSGoogle Scholar
  9. 9.
    H.J. Wollersheim et al., Nucl. Instrum. Methods A 537, 637 (2005)ADSGoogle Scholar
  10. 10.
    O. Wieland et al., Phys. Rev. Lett. 102, 092502 (2009)ADSGoogle Scholar
  11. 11.
    A. Giaz et al., Nucl. Instrum. Methods A 729, 910 (2013)ADSGoogle Scholar
  12. 12.
    R. Nicolini, From the Big Bang to the Nucleosynthesis, in Proceedings of the International School of Physics Enrico Fermi edited by A. Bracco, E. Nappi, Vol. 178 (SIF, 2010) p. 417Google Scholar
  13. 13.
    D. Ralet et al., Nucl. Instrum. Methods A 786, 32 (2015)ADSGoogle Scholar
  14. 14.
    M. Mattiuzzi et al., Nucl. Phys. A 612, 262 (1997)ADSGoogle Scholar
  15. 15.
    A. Bracco et al., Mod. Phys. Lett. A 22, 2479 (2007)ADSGoogle Scholar
  16. 16.
    O. Wieland et al., Phys. Rev. C 98, 064313 (2018)ADSGoogle Scholar
  17. 17.
    R. Nicolini et al., Nucl. Instrum. Methods A 582, 554 (2007)ADSGoogle Scholar
  18. 18.
    S. Akkoyun et al., Nucl. Instrum. Methods A 668, 26 (2012)ADSGoogle Scholar
  19. 19.
    A. Bracco, F.C.L. Crespi, E.G. Lanza, Eur. Phys. J. A 51, 99 (2015)ADSGoogle Scholar
  20. 20.
    A. Bracco et al., Phys. Scr. 91, 083002 (2016)ADSGoogle Scholar
  21. 21.
    M. Harakeh, A. van der Woude, Giant Resonances (Oxford University Press, 2001)Google Scholar
  22. 22.
    A. Schiller et al., At. Data Nucl. Data Tables 93, 549 (2007)ADSGoogle Scholar
  23. 23.
    C. Ghosh et al., Phys. Rev. C 94, 014318 (2016)ADSGoogle Scholar
  24. 24.
    C. Ghosh et al., Phys. Rev. C 96, 014309 (2017)ADSGoogle Scholar
  25. 25.
    Mukul et al., Phys. Rev. C 88, 024312 (2013)ADSGoogle Scholar
  26. 26.
    Battacharya et al., Phys. Rev. C 78, 064601 (2008)ADSGoogle Scholar
  27. 27.
    S. Ceruti et al., Phys. Rev. C 95, 014312 (2017)ADSGoogle Scholar
  28. 28.
    M. Ciemala et al., Phys. Rev. C 91, 054313 (2015)ADSGoogle Scholar
  29. 29.
    A.K.R. Kumar et al., Phys. Rev. C 96, 024322 (2017)ADSGoogle Scholar
  30. 30.
    D. Pandit et al., Phys. Rev. C 81, 061302R (2010)ADSGoogle Scholar
  31. 31.
    D. Mondal et al., Phys. Lett. B 784, 423 (2018)ADSGoogle Scholar
  32. 32.
    B. Dey et al., Phys. Rev. C 97, 014317 (2018)ADSGoogle Scholar
  33. 33.
    P.F. Bortignon, Phys. At. Nucl. 64, 1027 (2001)Google Scholar
  34. 34.
    M. Mattiuzzi et al., Nucl. Phys. A 612, 262 (1997)ADSGoogle Scholar
  35. 35.
    A. Bracco et al., Phys. Rev. Lett. 74, 3748 (1995)ADSGoogle Scholar
  36. 36.
    P. Donati et al., Phys. Lett. B 383, 15 (1996) and references thereinADSGoogle Scholar
  37. 37.
    E. Ormand et al., Phys. Rev. Lett. 69, 2905 (1992) and references thereinADSGoogle Scholar
  38. 38.
    D. Kusnezov et al., Phys. Rev. Lett. 81, 542 (1998)ADSGoogle Scholar
  39. 39.
    D. Pandit et al., Phys. Rev. C 88, 054327 (2013) and references thereinADSGoogle Scholar
  40. 40.
    D. Pandit et al., Phys. Lett. B 713, 434 (2012)ADSGoogle Scholar
  41. 41.
    O. Wieland et al., Phys. Rev. Lett. 97, 012501 (2006)ADSGoogle Scholar
  42. 42.
    A. Maj et al., Nucl. Phys. A 731, 319 (2004)ADSGoogle Scholar
  43. 43.
    P.F. Bortignon et al., Phys. Rev. Lett. 67, 3360 (1991)ADSGoogle Scholar
  44. 44.
    D. Santonocito et al., Phys. Lett. B 782, 427 (2018)ADSGoogle Scholar
  45. 45.
    K.A. Snover, Nucl. Phys. A 687, 337c (2001)ADSGoogle Scholar
  46. 46.
    P. Chomaz, Phys. Lett. B 347, 1 (1995)ADSGoogle Scholar
  47. 47.
    P.F. Bortignon et al., Nucl. Phys. A 583, C101 (1995)ADSGoogle Scholar
  48. 48.
    V. Baran et al., Nucl. Phys. A 600, 111 (1996)ADSGoogle Scholar
  49. 49.
    Ph. Chomaz et al., Nucl. Phys. A 563, 509 (1993)ADSGoogle Scholar
  50. 50.
    S. Flibotte et al., Phys. Rev. Lett. 77, 1448 (1996)ADSGoogle Scholar
  51. 51.
    V. Baran et al., Phys. Rev. Lett. 87, 182501 (2001)ADSGoogle Scholar
  52. 52.
    D. Pierroutsakou et al., Phys. Rev. C 80, 024612 (2009) and references thereinADSGoogle Scholar
  53. 53.
    A. Corsi et al., Phys. Lett. B 679, 197 (2009)ADSGoogle Scholar
  54. 54.
    A. Giaz et al., Phys. Rev. C 90, 014609 (2014)ADSGoogle Scholar
  55. 55.
    E. Wojcik et al., Acta Phys. Pol. B 38, 1469 (2007)ADSGoogle Scholar
  56. 56.
    A. Corsi et al., Phys. Rev. C 84, 041304(R) (2011)ADSGoogle Scholar
  57. 57.
    S. Ceruti et al., Phys. Rev. Lett. 115, 222502 (2015)ADSGoogle Scholar
  58. 58.
    D. Mondal et al., Phys. Lett. B 763, 422 (2016)ADSGoogle Scholar
  59. 59.
    W. Satula et al., Phys. Rev. Lett. 103, 012502 (2009)ADSGoogle Scholar
  60. 60.
    H. Sagawa et al., Phys. Lett. B 444, 1 (1998)ADSGoogle Scholar
  61. 61.
    D. Savran, T. Aumann, A. Zilges, Prog. Part. Nucl. Phys. 70, 210 (2013)ADSGoogle Scholar
  62. 62.
    D. Savran et al., Phys. Rev. Lett. 97, 172502 (2006)ADSGoogle Scholar
  63. 63.
    J. Endres et al., Phys. Rev. Lett. 105, 212503 (2010)ADSGoogle Scholar
  64. 64.
    E.G. Lanza et al., Phys. Rev. C 79, 054615 (2009)ADSGoogle Scholar
  65. 65.
    E.G. Lanza et al., Phys. Rev. C 84, 064602 (2011)ADSGoogle Scholar
  66. 66.
    F.C.L. Crespi et al., Phys. Rev. Lett. 113, 012501 (2014)ADSGoogle Scholar
  67. 67.
    L. Pellegri et al., Phys. Lett. B 738, 519 (2014)ADSGoogle Scholar
  68. 68.
    F.C.L. Crespi et al., Phys. Rev. C 91, 024323 (2015)ADSGoogle Scholar
  69. 69.
    L. Pellegri et al., Phys. Rev. C 92, 014330 (2015)ADSGoogle Scholar
  70. 70.
    M. Krzysiek et al., Phys. Rev. C 93, 044330 (2016)ADSGoogle Scholar
  71. 71.
    D. Mengoni et al., Nucl. Instrum. Methods A 764, 241 (2014)ADSGoogle Scholar
  72. 72.
    J. Endres et al., Phys. Rev. C 85, 064331 (2012)ADSGoogle Scholar
  73. 73.
    J. Endres et al., Phys. Rev. C 80, 034302 (2009)ADSGoogle Scholar
  74. 74.
    K. Govaert et al., Phys. Rev. C 57, 2229 (1998)ADSGoogle Scholar
  75. 75.
    S. Volz et al., Nucl. Phys. A 779, 1 (2006)ADSGoogle Scholar
  76. 76.
    A. Zilges et al., Phys. Lett. B 542, 43 (2002)ADSGoogle Scholar
  77. 77.
    D. Savran et al., Phys. Lett. B 786, 16 (2018)ADSGoogle Scholar
  78. 78.
  79. 79.
    E. Tryggestad et al., Phys. Lett. B 541, 52 (2002)ADSGoogle Scholar
  80. 80.
    A. Leistenschneider et al., Phys. Rev. Lett. 86, 5442 (2001)ADSGoogle Scholar
  81. 81.
    N. Nakatsuka et al., Phys. Lett. B 768, 387 (2017)ADSGoogle Scholar
  82. 82.
    D.M. Rossi et al., Phys. Rev. Lett. 111, 242503 (2013)ADSGoogle Scholar
  83. 83.
    P. Axel, Phys. Rev. 126, 671 (1962)ADSGoogle Scholar
  84. 84.
    J. Gibelin, Phys. Rev. Lett. 101, 212503 (2008)ADSGoogle Scholar
  85. 85.
    P. Adrich et al., Phys. Rev. Lett. 95, 132501 (2005)ADSGoogle Scholar
  86. 86.
  87. 87.
    N.S. Martorana et al., Phys. Lett. B 782, 112 (2018)ADSGoogle Scholar
  88. 88.
    A.C. Larsen et al., Phys. Rev. C 97, 054329 (2018)ADSGoogle Scholar
  89. 89.
    R. Avigo, in preparationGoogle Scholar
  90. 90.
    Y. Togano, in preparationGoogle Scholar
  91. 91.
    T. Nakamura, Y. Kondo, Nucl. Instrum. Methods B 376, 156 (2016)ADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. Bracco
    • 1
    • 2
  • F. Camera
    • 1
    • 2
    Email author
  • F. C. L. Crespi
    • 1
    • 2
  • B. Million
    • 2
  • O. Wieland
    • 2
  1. 1.Dipartimento di Fisica dell’Università di MilanoMilanoItaly
  2. 2.Istituto Nazionale Fisica Nucleare, Sezione di MilanoMilanoItaly

Personalised recommendations