Advertisement

Determination of contributions from residual light charged hadrons to inclusive charged hadrons from e+e- annihilation data

  • Alireza Mohamaditabar
  • F. Taghavi-ShahriEmail author
  • Hamzeh Khanpour
  • Maryam Soleymaninia
Regular Article - Theoretical Physics
  • 17 Downloads

Abstract.

In this paper, we present an extraction of the contribution from the “residual” light charged hadrons to the inclusive unidentified light charged hadron fragmentation functions (FFs) at next-to-leading (NLO) and, for the first time, at next-to-next-to-leading order (NNLO) accuracy in perturbative QCD. Considering the contributions from charged pion, kaon and (anti)proton FFs from recent NNFF1.0 analysis of charged hadron FFs, we determine the small but efficient residual charged hadron FFs from QCD analysis of all available single inclusive unidentified charged hadron data sets in electron-positron (\( e^{+} e^{-}\)) annihilations. The zero-mass variable flavor number scheme (ZM-VFNS) has been applied to account for the heavy flavor contributions. The obtained optimum set of residual charged hadron FFs is accompanied by the well-known Hessian technique to assess the uncertainties in the extraction of these new sets of FFs. It is shown that the residual contributions of charged hadron FFs have a very important impact on the inclusive charged hadron FFs and substantially on the quality and the reliability of the QCD fit. Furthermore, this study shows that the residual contributions become also sizable for the case of heavy quark FFs as well as for the c- and b-tagged cross sections.

References

  1. 1.
    J. Gao, L. Harland-Lang, J. Rojo, Phys. Rep. 742, 1 (2018) arXiv:1709.04922 [hep-ph]ADSMathSciNetGoogle Scholar
  2. 2.
    NNPDF Collaboration (R.D. Ball et al.), Eur. Phys. J. C 77, 663 (2017) arXiv:1706.00428 [hep-ph]Google Scholar
  3. 3.
    NNPDF Collaboration (V. Bertone et al.), Eur. Phys. J. C 78, 651 (2018) arXiv:1807.03310 [hep-ph]Google Scholar
  4. 4.
    NNPDF Collaboration (V. Bertone et al.), Eur. Phys. J. C 77, 516 (2017) arXiv:1706.07049 [hep-ph]Google Scholar
  5. 5.
    D. d’Enterria, K.J. Eskola, I. Helenius, H. Paukkunen, Nucl. Phys. B 883, 615 (2014) arXiv:1311.1415 [hep-ph]ADSGoogle Scholar
  6. 6.
    L. Bourhis, M. Fontannaz, J.P. Guillet, M. Werlen, Eur. Phys. J. C 19, 89 (2001) arXiv:hep-ph/0009101ADSGoogle Scholar
  7. 7.
    B.A. Kniehl, G. Kramer, B. Potter, Nucl. Phys. B 582, 514 (2000) arXiv:hep-ph/0010289ADSGoogle Scholar
  8. 8.
    S. Kretzer, Phys. Rev. D 62, 054001 (2000) arXiv:hep-ph/0003177ADSGoogle Scholar
  9. 9.
    C.A. Aidala, F. Ellinghaus, R. Sassot, J.P. Seele, M. Stratmann, Phys. Rev. D 83, 034002 (2011) arXiv:1009.6145 [hep-ph]ADSGoogle Scholar
  10. 10.
    M. Zarei, F. Taghavi-Shahri, S. Atashbar Tehrani, M. Sarbishei, Phys. Rev. D 92, 074046 (2015) arXiv:1601.02815 [hep-ph]ADSGoogle Scholar
  11. 11.
    G.R. Boroun, S. Zarrin, S. Dadfar, Nucl. Phys. A 953, 21 (2016)ADSGoogle Scholar
  12. 12.
    I. Helenius, H. Paukkunen, JHEP 05, 196 (2018) arXiv:1804.03557 [hep-ph]ADSGoogle Scholar
  13. 13.
    M. Soleymaninia, H. Khanpour, S.M. Moosavi Nejad, Phys. Rev. D 97, 074014 (2018) arXiv:1711.11344 [hep-ph]ADSGoogle Scholar
  14. 14.
    D. de Florian, R. Sassot, M. Epele, R.J. Hernández-Pinto, M. Stratmann, Phys. Rev. D 91, 014035 (2015) arXiv:1410.6027 [hep-ph]ADSGoogle Scholar
  15. 15.
    D. de Florian, M. Epele, R.J. Hernandez-Pinto, R. Sassot, M. Stratmann, Phys. Rev. D 95, 094019 (2017) arXiv:1702.06353 [hep-ph]ADSGoogle Scholar
  16. 16.
    M. Hirai, H. Kawamura, S. Kumano, K. Saito, Prog. Theor. Exp. Phys. 2016, 113B04 (2016) arXiv:1608.04067 [hep-ph]Google Scholar
  17. 17.
    N. Sato, J.J. Ethier, W. Melnitchouk, M. Hirai, S. Kumano, A. Accardi, Phys. Rev. D 94, 114004 (2016) arXiv:1609.00899 [hep-ph]ADSGoogle Scholar
  18. 18.
    D.P. Anderle, T. Kaufmann, M. Stratmann, F. Ringer, I. Vitev, Phys. Rev. D 96, 034028 (2017) arXiv:1706.09857 [hep-ph]ADSGoogle Scholar
  19. 19.
    D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D 76, 074033 (2007) arXiv:0707.1506 [hep-ph]ADSGoogle Scholar
  20. 20.
    E.R. Nocera, PoS DIS 2017, 231 (2018) arXiv:1709.03400 [hep-ph]Google Scholar
  21. 21.
    M. Soleymaninia, M. Goharipour, H. Khanpour, Phys. Rev. D 98, 074002 (2018) arXiv:1805.04847 [hep-ph]ADSMathSciNetGoogle Scholar
  22. 22.
    Belle Collaboration (M. Leitgab et al.), Phys. Rev. Lett. 111, 062002 (2013) arXiv:1301.6183 [hep-ex]Google Scholar
  23. 23.
    Belle Collaboration (R. Seidl et al.), Phys. Rev. D 92, 092007 (2015) arXiv:1509.00563 [hep-ex]ADSGoogle Scholar
  24. 24.
    BaBar Collaboration (J.P. Lees et al.), Phys. Rev. D 88, 032011 (2013) arXiv:1306.2895 [hep-ex]Google Scholar
  25. 25.
    HERMES Collaboration (A. Airapetian et al.), Phys. Rev. D 87, 074029 (2013) arXiv:1212.5407 [hep-ex]Google Scholar
  26. 26.
    COMPASS Collaboration (C. Adolph et al.), Phys. Lett. B 764, 1 (2017) arXiv:1604.02695 [hep-ex]Google Scholar
  27. 27.
    COMPASS Collaboration (C. Adolph et al.), Phys. Lett. B 767, 133 (2017) arXiv:1608.06760 [hep-ex]Google Scholar
  28. 28.
    CMS Collaboration (S. Chatrchyan et al.), JHEP 08, 086 (2011) arXiv:1104.3547 [hep-ex]ADSGoogle Scholar
  29. 29.
    CMS Collaboration (S. Chatrchyan et al.), Eur. Phys. J. C 72, 1945 (2012) arXiv:1202.2554 [nucl-ex]ADSGoogle Scholar
  30. 30.
    ALICE Collaboration (B.B. Abelev et al.), Eur. Phys. J. C 73, 2662 (2013) arXiv:1307.1093 [nucl-ex]ADSGoogle Scholar
  31. 31.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. D 89, 012001 (2014) arXiv:1309.1800 [nucl-ex]ADSGoogle Scholar
  32. 32.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. D 76, 051106 (2007) arXiv:0704.3599 [hep-ex]Google Scholar
  33. 33.
    CDF Collaboration (F. Abe et al.), Phys. Rev. Lett. 61, 1819 (1988)Google Scholar
  34. 34.
    CDF Collaboration (T. Aaltonen et al.), Phys. Rev. D 79, 112005 (2009) Phys. Rev. D 82Google Scholar
  35. 35.
    D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D 75, 114010 (2007) arXiv:hep-ph/0703242 [hep-ph]ADSGoogle Scholar
  36. 36.
    M. Soleymaninia, A.N. Khorramian, S.M. Moosavi Nejad, F. Arbabifar, Phys. Rev. D 88, 054019 (2013) Phys. Rev. D 89ADSGoogle Scholar
  37. 37.
    STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005) arXiv:nucl-ex/0501009ADSGoogle Scholar
  38. 38.
    N. Armesto et al., J. Phys. G 35, 054001 (2008) arXiv:0711.0974 [hep-ph]Google Scholar
  39. 39.
    A. Mitov, S.O. Moch, Nucl. Phys. B 751, 18 (2006) arXiv:hep-ph/0604160ADSGoogle Scholar
  40. 40.
    P.J. Rijken, W.L. van Neerven, Phys. Lett. B 392, 207 (1997) arXiv:hep-ph/9609379ADSGoogle Scholar
  41. 41.
    J. Blumlein, V. Ravindran, Nucl. Phys. B 749, 1 (2006) arXiv:hep-ph/0604019ADSGoogle Scholar
  42. 42.
    V. Bertone, S. Carrazza, J. Rojo, Comput. Phys. Commun. 185, 1647 (2014) arXiv:1310.1394 [hep-ph]ADSMathSciNetGoogle Scholar
  43. 43.
    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) (Yad. Fiz. 15Google Scholar
  44. 44.
    L.N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975) (Yad. Fiz. 20Google Scholar
  45. 45.
    G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)ADSGoogle Scholar
  46. 46.
    Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977) (Zh. Eksp. Teor. Fiz. 73ADSGoogle Scholar
  47. 47.
    V. Bertone, S. Carrazza, E.R. Nocera, JHEP 03, 046 (2015) arXiv:1501.00494 [hep-ph]ADSGoogle Scholar
  48. 48.
    TASSO Collaboration (W. Braunschweig et al.), Z. Phys. C 47, 187 (1990)Google Scholar
  49. 49.
    TPC/Two Gamma Collaboration (H. Aihara et al.), Phys. Rev. Lett. 61, 1263 (1988)Google Scholar
  50. 50.
    ALEPH Collaboration (D. Buskulic et al.), Phys. Lett. B 357, 487 (1995) Phys. Lett. B 364ADSGoogle Scholar
  51. 51.
    DELPHI Collaboration (P. Abreu et al.), Eur. Phys. J. C 5, 585 (1998)Google Scholar
  52. 52.
    DELPHI Collaboration (P. Abreu et al.), Eur. Phys. J. C 6, 19 (1999)ADSGoogle Scholar
  53. 53.
    OPAL Collaboration (K. Ackerstaff et al.), Eur. Phys. J. C 7, 369 (1999) arXiv:hep-ex/9807004ADSGoogle Scholar
  54. 54.
    SLD Collaboration (K. Abe et al.), Phys. Rev. D 69, 072003 (2004) arXiv:hep-ex/0310017Google Scholar
  55. 55.
    F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975)ADSGoogle Scholar
  56. 56.
    F. James, MINUIT Function Minimization and Error Analysis: Reference Manual Version 94.1, CERN-D-506, CERN-D506. Google Scholar
  57. 57.
    A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 35, 325 (2004) arXiv:hep-ph/0308087ADSGoogle Scholar
  58. 58.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009) arXiv:0901.0002 [hep-ph]ADSGoogle Scholar
  59. 59.
    S. Atashbar Tehrani, Phys. Rev. C 86, 064301 (2012)ADSGoogle Scholar
  60. 60.
    F. Taghavi-Shahri, H. Khanpour, S. Atashbar Tehrani, Z. Alizadeh Yazdi, Phys. Rev. D 93, 114024 (2016) arXiv:1603.03157 [hep-ph]ADSGoogle Scholar
  61. 61.
    H. Khanpour, S. Atashbar Tehrani, Phys. Rev. D 93, 014026 (2016) arXiv:1601.00939 [hep-ph]ADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alireza Mohamaditabar
    • 1
  • F. Taghavi-Shahri
    • 1
    Email author
  • Hamzeh Khanpour
    • 2
    • 3
  • Maryam Soleymaninia
    • 3
  1. 1.Department of PhysicsFerdowsi University of MashhadMashhadIran
  2. 2.Department of PhysicsUniversity of Science and Technology of MazandaranBehshahrIran
  3. 3.School of Particles and AcceleratorsInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations