Advertisement

Determination of the 193Ir(n, 2n) reaction cross section and correction methodology for the 191Ir(n,\( \gamma\)) contamination

  • A. KalamaraEmail author
  • N. Patronis
  • R. Vlastou
  • M. Kokkoris
  • S. Chasapoglou
  • A. Stamatopoulos
  • M. Serris
  • V. Paneta
  • M. Axiotis
  • A. Lagoyannis
  • S. Harissopulos
  • I. E. Stamatelatos
Regular Article - Experimental Physics
  • 27 Downloads

Abstract.

The cross section of the 193Ir(n, 2n)192Ir reaction has been determined by means of the activation technique, relative to the 27Al (n,\( \alpha\)) and 197Au(n, 2n) reference reactions cross sections, at neutron beam energies ranging from 10 to 21 MeV. The quasi-monoenergetic neutron beams were produced at the 5.5 MV Tandem T11/25 Accelerator Laboratory of NCSR “Demokritos” via the 2H(d, n) and 3H(d, n) reactions. The induced \( \gamma\)-ray activity of the irradiated target and reference foils was measured with high resolution HPGe detectors. In order to correct for the contribution of the 191Ir(n,\( \gamma\))192Ir reaction, which is open to low energy parasitic neutrons, a recently developed analysis method was implemented and it is presented in great detail. Furthermore, cross section theoretical calculations were carried out using the EMPIRE and TALYS codes over a wide energy range.

Notes

References

  1. 1.
    S. Cowell, Evaluation of iridium $(\ab{n},\ab{xn})$ reactions, in International Conference on Nuclear Data for Science and Technology,  https://doi.org/10.1051/ndata:07571 (2007)
  2. 2.
    M.B. Chadwick et al., Nucl. Data Sheets 108, 2716 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    N. Fotiades et al., AIP Conf. Proc. 769, 898 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    N. Patronis et al., Phys. Rev. C 75, 034607 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    A. Kalamara et al., Phys. Rev. C 98, 034607 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    A.A. Filatenkov, Neutron activation cross sections measured at KRI in neutron energy region 13.4--14.9MeV, INDC International Nuclear Data Committee, IAEA, INDC(CCP)-0460 Rev (2016) https://www-nds.iaea.org/publications/indc/indc-ccp-0460/
  7. 7.
    M. Herman et al., Nucl. Phys. A 430, 69 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    B.P. Bayhurst et al., Phys. Rev. C 12, 451 (1975)ADSCrossRefGoogle Scholar
  9. 9.
    J.K. Temperley, D.E. Barnes, Neutron Activation Cross Sections for Some Isotopes of Ruthenium, Palladium, Indium, Tin, and Iridium, Ballistic Research Labs Reports, BRL-R, no. 1491 (1970)Google Scholar
  10. 10.
    C. Konno, Activation Cross section measurements at neutron energy from 13.3 to 14.9MeV, JAERI Reports, no. 1329 (1993)Google Scholar
  11. 11.
    A.A. Druzhinin et al., Yad. Fiz. 14, 682 (1971)Google Scholar
  12. 12.
    M. Herman et al., Nucl. Data Sheets 108, 2655 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    A. Koning, S. Hilaire, S. Goriely, TALYS-1.8 (2015), http://www.talys.eu/fileadmin/talys/user/docs/talys1.8.pdf
  14. 14.
  15. 15.
    A. Kalamara et al., Phys. Rev. C 93, 014610 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    R. Vlastou et al., Phys. Proc. 66, 425 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    IAEA-TECDOC-1822, Development of a Reference Database for Particle Induced Gamma Ray Emission (PIGE) Spectroscopy (IAEA, 2017) p. 43Google Scholar
  18. 18.
    C.A. Kalfas et al., Nucl. Instrum. Methods Phys. Res. Sect. A 830, 265 (2016)ADSCrossRefGoogle Scholar
  19. 19.
  20. 20.
    X-5 Monte Carlo team, MCNP-A General Monte Carlo N-ParticleTransport Code, version 5, Volume I-III, LA-UR-03-1987, LA-CP-03 0245 and LA-CP-03-0284 (April, 2003)Google Scholar
  21. 21.
    F.B. Brown et al., Trans. Am. Nucl. Soc. 87, 273 (2002)Google Scholar
  22. 22.
    E. Birgersson, G. Loevestam, NeuSDesc-Neutron Source Description Software Manual, JRC Scientific and Technical Reports (2009)Google Scholar
  23. 23.
  24. 24.
    W. Mannhart, A Small Guide to Generating Covariances of Experimental Data, IAEA, INDC(NDS)-0588 Rev. (2013)Google Scholar
  25. 25.
    W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)ADSCrossRefGoogle Scholar
  26. 26.
    A. D' Arrigo et al., J. Phys. G 20, 305 (1994)CrossRefGoogle Scholar
  27. 27.
    J. Raynal, IAEA unpublished, SMR-9/8Google Scholar
  28. 28.
    J. Raynal, Computing as a language of physics, in ICTP International Seminar Course, Trieste, Italy (IAEA, 1972) p. 281Google Scholar
  29. 29.
    H.M. Hofmann et al., Ann. Phys. 90, 403 (1975)ADSCrossRefGoogle Scholar
  30. 30.
    V.A. Plujko, Acta Phys. Pol. B 31, 435 (2000)ADSGoogle Scholar
  31. 31.
    R. Capote et al., Nucl. Data Sheets 110, 3107 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    V. Avrigeanu et al., Phys. Rev. C 49, 2136 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    F.D. Becchetti jr., G.W. Greenlees, Phys. Rev. 182, 1190 (1969)ADSCrossRefGoogle Scholar
  35. 35.
    J.C. Ferrer, J.D. Carlson, J. Rapaport, Nucl. Phys. A 275, 325 (1977)ADSCrossRefGoogle Scholar
  36. 36.
    D. Wilmore, P.E. Hodgson, Nucl. Phys. 55, 673 (1964)CrossRefGoogle Scholar
  37. 37.
    O. Bersillon, N. Cindro, in Fifth International Symposium On Interactions of Fast Neutrons with Nuclei, Gaussig (1975)Google Scholar
  38. 38.
    D.G. Madland, OECD/NEA Proceedings of a Specialist Meeting, Nucleon Nucleus Optical Model up to 200MeV, Paris (1997) p. 129Google Scholar
  39. 39.
    R. Macklin, P.G. Young, Nucl. Sci. Eng. 97, 239 (1987)CrossRefGoogle Scholar
  40. 40.
    R.L. Varner et al., Phys. Rep. 201, 57 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    R.L. Walter, P.P. Guss, Rad. Effects 95, 73 (1986)CrossRefGoogle Scholar
  42. 42.
    B. Morillon, P. Romain, Phys. Rev. C 70, 014601 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    Bound single-particle states for neutrons from a global spherical optical model, Phys. Rev. C 74, 014601 (2006)Google Scholar
  44. 44.
    B. Morillon, P. Romain, Phys. Rev. C 76, 044601 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    J.J. Griffin, Phys. Rev. Lett. 17, 478 (1966)ADSCrossRefGoogle Scholar
  46. 46.
    J.J. Griffin, Phys. Lett. B 24, 5 (1967)ADSCrossRefGoogle Scholar
  47. 47.
    G.R. Satchler, Direct Nuclear Reactions, International Series of Monographs on Physics (Clarendon Press, 1983)Google Scholar
  48. 48.
    V. Avrigeanu et al., Phys. Rev. C 90, 044612 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    A. Kalamara et al., Phys. Rev. C 97, 034615 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. Kalamara
    • 1
    Email author
  • N. Patronis
    • 2
  • R. Vlastou
    • 1
  • M. Kokkoris
    • 1
  • S. Chasapoglou
    • 1
  • A. Stamatopoulos
    • 1
  • M. Serris
    • 3
  • V. Paneta
    • 4
  • M. Axiotis
    • 5
  • A. Lagoyannis
    • 5
  • S. Harissopulos
    • 5
  • I. E. Stamatelatos
    • 6
  1. 1.Department of PhysicsNational Technical University of AthensAthensGreece
  2. 2.Department of PhysicsUniversity of IoanninaIoanninaGreece
  3. 3.Department of Naval ArchitectureUniversity of West AtticaAthensGreece
  4. 4.Department of Physics and Astronomy, Ångström LaboratoryUppsala UniversityUppsalaSweden
  5. 5.Tandem Accelerator Laboratory, Institute of Nuclear and Particle Physics, NCSR “Demokritos”Aghia ParaskeviGreece
  6. 6.Institute of Nuclear and Radiological Sciences, Energy, Technology & Safety, NCSR “Demokritos”Aghia ParaskeviGreece

Personalised recommendations