Developments towards the delivery of selenium ion beams at ISOLDE

Abstract.

The production of selenium ion beams has been investigated at the CERN-ISOLDE facility via two different ionization methods. Whilst molecular selenium (SeCO) beams were produced at ISOLDE since the early 1990s, recent attempts at reliably reproducing these results have so far been unsuccessful. Here we report on tests of a step-wise resonance laser ionization scheme for atomic selenium using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). For stable selenium an ionization efficiency of 1% was achieved. During the first on-line radioisotope production tests, a yield of \( \approx 2.4 \times 10^4\) ions/μC was measured for 71Se+, using a ZrO2 target with an electron impact ion source. In parallel, an approach for extraction of molecular carbonyl selenide (SeCO) beams was tested. The same ion source and target material were used and a maximum yield of \( \approx 3.6\times 10^5\) ions/μ C of 71SeCO+ was measured.

References

  1. 1

    M.J.G. Borge, B. Jonson, J. Phys. G 44, 044011 (2017)

    ADS  Article  Google Scholar 

  2. 2

    R. Catherall et al., J. Phys. G 44, 094002 (2017)

    ADS  Article  Google Scholar 

  3. 3

    U. Köster, in Exotic Nuclei and Atomic Masses (ENAM 98) (ASCE, 1998) pp. 989--994

  4. 4

    L. Penescu et al., Rev. Sci. Instrum. 81, 02A906 (2010)

    Article  Google Scholar 

  5. 5

    V.I. Mishin et al., Nucl. Instrum. Methods B 73, 550 (1993)

    ADS  Article  Google Scholar 

  6. 6

    D.A. Fink et al., Nucl. Instrum. Methods B 344, 83 (2015)

    ADS  Article  Google Scholar 

  7. 7

    T. Day Goodacre et al., Nucl. Instrum. Methods B 376, 39 (2016)

    ADS  Article  Google Scholar 

  8. 8

    Y. Martinez Palenzuela et al., Nucl. Instrum. Methods B 431, 59 (2018)

    ADS  Article  Google Scholar 

  9. 9

    A. M. Hurst et al., Phys. Rev. Lett. 98, 072501 (2007)

    ADS  Article  Google Scholar 

  10. 10

    D. Doherty, J. Ljungvall, Technical report CERN-INTC-2014-057. INTC-P-423 (2014)

  11. 11

    N. Orce, Technical Report CERN-INTC-2012-067. INTC-P-368 (2012)

  12. 12

    U. Köster et al., Nucl. Instrum. Methods B 204, 303 (2003)

    ADS  Article  Google Scholar 

  13. 13

    F. Wenander, JINST 5, C10004 (2010)

    ADS  Article  Google Scholar 

  14. 14

    V.N. Fedosseev et al., J. Phys. G 44, 084006 (2017)

    ADS  Article  Google Scholar 

  15. 15

    T. Day Goodacre et al., Nucl. Instrum. Methods A 830, 510 (2016)

    ADS  Article  Google Scholar 

  16. 16

    T.E. Cocolios et al., Nucl. Instrum. Methods B 266, 4403 (2008)

    ADS  Article  Google Scholar 

  17. 17

    NIST database, extracted January (2017)

  18. 18

    J.E. Ruedy, R.C. Gibbs, Phys. Rev. 46, 880 (1934)

    ADS  Article  Google Scholar 

  19. 19

    C. Morillon, J. Vergès, Phys. Scr. 10, 227 (1974)

    ADS  Article  Google Scholar 

  20. 20

    V.N. Fedosseev et al., Opt. Spectrosc. 57, 552 (1984)

    ADS  Google Scholar 

  21. 21

    T. Day Goodacre et al., Nucl. Instrum. Methods A 830, 510 (2016)

    ADS  Article  Google Scholar 

  22. 22

    H.L. Ravn, S. Sundell, L. Westgaard, Nucl. Instrum. Methods 123, 131 (1975)

    ADS  Article  Google Scholar 

  23. 23

    B. Marsh, Contribution to the CAS-CERN Accelerator School: Ion Sources, Senec, Slovakia, 29 May - 8 June 2012, https://cds.cern.ch/record/1445287 (CERN, 2013)

  24. 24

    E. Hageboet al., Nucl. Instrum. Methods B 70, 165 (1992)

    ADS  Article  Google Scholar 

  25. 25

    S. Sundell, H. Ravn, Nucl. Instrum. Methods B 70, 160 (1992)

    ADS  Article  Google Scholar 

  26. 26

    T.G. Pearson, P.L. Robinson, J. Chem. Soc. (Resumed), pp. 652--660 (1932)

  27. 27

    L. Penescu, Techniques to produce and accelerate radioactive ion beams, PhD Thesis, Bucharest, Polytechnic Inst (2009)

  28. 28

    M. Turrión et al., Nucl. Instrum. Methods B 266, 4674 (2008)

    ADS  Article  Google Scholar 

  29. 29

    R Kirchner, Nucl. Instrum. Methods B 70, 186 (1992)

    ADS  Article  Google Scholar 

  30. 30

    A. Roine, HSC Chemistry 7.1. http://www.hsc-chemistry.net (2010) (online

  31. 31

    J.R. Marquart, R.L. Belford, H.A. Fraenkel, Int. J. Chem. Kinet. 9, 671 (1977)

    Article  Google Scholar 

  32. 32

    J.P. Ramos, Nucl. Instrum. Methods B, https://doi.org/10.1016/j.nimb.2019.05.045

  33. 33

    A. Kelic, arXiv:0906.4193 (2009)

  34. 34

    R.N. Wolf et al., Nucl. Instrum. Methods A 686, 82 (2012)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Chrysalidis.

Additional information

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data can be made available by the authors upon reasonable request.]

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by K. Blaum

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chrysalidis, K., Ballof, J., Düllmann, C.E. et al. Developments towards the delivery of selenium ion beams at ISOLDE. Eur. Phys. J. A 55, 173 (2019). https://doi.org/10.1140/epja/i2019-12873-4

Download citation