Advertisement

Theoretical predictions for \(\alpha\)-decay properties of 283-339Og using a shell-effect induced generalized liquid-drop model

  • Zhishuai Ge
  • Gen Zhang
  • Shihui Cheng
  • Yuling Li
  • Ning Su
  • Wuzheng Guo
  • Yu. S. Tsyganov
  • Feng-Shou ZhangEmail author
Regular Article - Theoretical Physics

Abstract.

The \( \alpha\)-decay half-lives of synthesized superheavy nuclei (SHN) from seaborgium to oganesson are calculated by employing the generalized liquid-drop model (GLDM), the Royer formula and the universal decay law (UDL) with experimental \( \alpha\)-decay energies \(Q_{\alpha}\). For the GLDM, we consider the shell correction. The agreement between the experimental data and the calculations indicates that all the methods we used are successful to reproduce \(\alpha\)-decay half-lives of known SHN. The decay-modes of known nuclei on the 294Og decay-chain are also consistent with the experiments. For the unknown nuclei, the \( \alpha\)-decay half-lives have been predicted by inputting \( Q_{\alpha}\) values extracted from the newest Weizsäcker-Skyrme-4 (WS4) model. In the GLDM with shell correction, we adopt the constant \( \alpha\)-preformation factor \( P_{\alpha}\) as well as \( P_{\alpha}\) extracted by Cluster Formation Model (CFM). To calculate CFM \( P_{\alpha}\) values, we use FRDM binding energies and WS4 mass excess values. The relationship of \( P_{\alpha}\) and \( Q_{\alpha}\) shows that 294, 296, 314, 316, 320Og isotopes are relatively stable. The competition between \( \alpha\)-decay and spontaneous fission is discussed in detail for 283-339Og isotopes. The decay-chains of 290-300Og have also been presented. Since the \( \alpha\)-decay half-lives of 283-303Og isotopes are obviously lower than their spontaneous fission half-lives by more than 6 orders, these isotopes would mainly have \( \alpha\)-decay. The 306-334Og isotopes may undergo spontaneous fission. The nuclei 304, 305Og would have both \( \alpha\)-decay and spontaneous fission. By the shell-effect included GLDM with CFM \( P_{\alpha}\), we predict 295Og undergoes \( \alpha\)-decay and \( T_{\alpha}^{1/2} = 0.37\) ms. The 296Og is also \( \alpha\)-decay and has \( T_{\alpha}^{1/2} = 0.40\) ms.

References

  1. 1.
    A. Sobiczewski, F.A. Gareev, B.N. Kalinkin, Phys. Lett. 22, 500 (1966)ADSCrossRefGoogle Scholar
  2. 2.
    V.M. Strutinsky, Nucl. Phys. A 95, 420 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    S. Hofmann, Rep. Prog. Phys. 61, 639 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    S. Hofmann, G. Munzenberg, Rev. Mod. Phys. 72, 733 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Yu.Ts. Oganessian, J. Phys. G: Nucl. Part. Phys. 34, R165 (2007)CrossRefGoogle Scholar
  6. 6.
    S.A. Giuliani, Z. Matheson, W. Nazarewicz, E. Olsen, P.-G. Reinhard et al., Rev. Mod. Phys. 91, 011001 (2019)ADSCrossRefGoogle Scholar
  7. 7.
    P. Möller, J.R. Nix, J. Phys. G: Nucl. Part. Phys. 20, 1681 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    S. Ćwiok, J. Dobaczewski, P.H. Heenen, P. Magierski, W. Nazarewicz, Nucl. Phys. A 611, 211 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    K. Rutz, M. Bender, T. Bürvenich, T. Schilling, P.-G. Reinhard et al., Phys. Rev. C 56, 238 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    A.T. Kruppa, M. Bender, W. Nazarewicz, P.-G. Reinhard, T. Vertse et al., Phys. Rev. C 61, 034313 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    S. Hofmann, Lect. Notes Phys. 764, 203 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    I. Petermann, K. Langanke, G. Martínez-Pinedo, I.V. Panov, P.-G. Reinhard et al., Eur. Phys. J. A 48, 122 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 88, 061302 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, F.S. Abdullin, A.N. Polyakov et al., Phys. Rev. C 74, 044602 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Y.T. Oganessian, F.S. Abdullin, C. Alexander, J. Binder, R.A. Boll et al., Phys. Rev. Lett. 109, 162501 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    L. Stavsetra, K.E. Gregorich, J. Dvorak, P.A. Ellison, I. Dragojevic et al., Phys. Rev. Lett. 103, 132502 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    P.A. Ellison, K.E. Gregorich, J.S. Berryman, D.L. Bleuel, R.M. Clark et al., Phys. Rev. Lett. 105, 182701 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    N.T. Brewer, V.K. Utyonkov, K.P. Rykaczewski, Y.T. Oganessian, F.S. Abdullin et al., Phys. Rev. C 98, 024317 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    G.Z. Gamov, Z. Phys. 51, 204 (1928)ADSCrossRefGoogle Scholar
  20. 20.
    R.W. Gurney, E.U. Condon, Nature (London) 122, 439 (1928)ADSCrossRefGoogle Scholar
  21. 21.
    G. Royer, B. Remaud, Nucl. Phys. A 444, 477 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    G. Royer, K. Zbiri, C. Bonilla, Nucl. Phys. A 730, 355 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    G. Royer, Nucl. Phys. A 848, 279 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    K.P. Santhosh, A. Joseph, Pramana 62, 957 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    K.P. Santhosh, B. Priyanka, Eur. Phys. J. A 49, 150 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    J.M. Dong, W. Zuo, J.Z. Gu, Y.Z. Wang, B.B. Peng, Phys. Rev. C 81, 064309 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    C. Xu, Z.Z. Ren, Phys. Rev. C 74, 014304 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    V.E. Viola, G.T. Seaborg, J. Inorg. Nucl. Chem. 28, 741 (1966)CrossRefGoogle Scholar
  29. 29.
    A. Sobiczewski, Z. Patyk, S. Cwiok, Phys. Lett. B 224, 1 (1989)ADSCrossRefGoogle Scholar
  30. 30.
    B.A. Brown, Phys. Rev. C 46, 811 (1992)ADSCrossRefGoogle Scholar
  31. 31.
    G. Royer, J. Phys. G 26, 1149 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    H. Geiger, J.M. Nuttall, Philos. Mag. 22, 613 (1911)CrossRefGoogle Scholar
  33. 33.
    Monika Patial, R.J. Liotta, R. Wyss, Phys. Rev. C 93, 054326 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    D.D. Ni, Z.Z. Ren, Phys. Rev. C 81, 064318 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    C. Xu, G. Röpke, P. Schuck, Z. Ren, Y. Funaki et al., Phys. Rev. C 95, 061306 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    C. Qi, F.R. Xu, R.J. Liotta, R. Wyss, Phys. Rev. Lett. 103, 072501 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    C. Qi, F.R. Xu, R.J. Liotta, R. Wyss, M.Y. Zhang, C. Asawatangtrakuldee, D. Hu, Phys. Rev. C 80, 044326 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    D. Ni, Z. Ren, Phys. Rev. C 81, 024315 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    S.M.S. Ahmed, R. Yahaya, S. Radiman, M.S. Yasir, J. Phys. G: Nucl. Part. Phys. 40, 065105 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    D. Deng, Z. Ren, D. Ni, Y. Qian, J. Phys. G: Nucl. Part. Phys. 42, 075106 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    D. Deng, Z. Ren, Phys. Rev. C 93, 044326 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    S.M.S. Ahmed, Nucl. Phys. A 962, 103 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    N. Wang, M. Liu, X. Wu, J. Meng, Phys. Lett. B 734, 215 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    K.P. Santhosh, C. Nithya, Phys. Rev. C 94, 054621 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    X.J. Bao, S.Q. Guo, H.F. Zhang, J.Q. Li, Phys. Rev. C 95, 034323 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    H.F. Zhang, G. Royer, J.Q. Li, Phys. Rev. C 84, 027303 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    W.D. Myers, Droplet Model of Atomic Nuclei (Plenum, New York, 1977)CrossRefGoogle Scholar
  48. 48.
    V.M. Strutinsky, F.A. Ivanjuk, Nucl. Phys. A 255, 405 (1975)ADSCrossRefGoogle Scholar
  49. 49.
    N. Wang, M. Liu, X.Z. Wu, Phys. Rev. C 81, 044322 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    W. Swiatecki, Phys. Rev. 100, 937 (1955)ADSCrossRefGoogle Scholar
  51. 51.
    C. Xu, Z.Z. Ren, Y.Q. Guo, Phys. Rev. C 78, 044329 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    K.P. Santhosh, R.K. Biju, S. Sabina, Nucl. Phys. A 832, 220 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    P. Möller, A.J. Sierk a, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109-110, 1 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    Yu.Ts. Oganessian, A. Sobiczewski, G.M. Ter-Akopian, Phys. Scr. 92, 023003 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    G. Audi, F.G. Kondev, Meng Wang, W.J. Huang, S. Naimi, Chin. Phys. C 41, 030001 (2017)ADSCrossRefGoogle Scholar
  56. 56.
    V.K. Utyonkov, N.T. Brewer, Yu.Ts. Oganessian, K.P. Rykaczewski, F.Sh. Abdullin et al., Phys. Rev. C 97, 014320 (2018)ADSCrossRefGoogle Scholar
  57. 57.
    M. Ismail, A. Adel, Phys. Rev. C 86, 014616 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    M. Ismail, A. Adel, Phys. Rev. C 97, 044301 (2018)ADSCrossRefGoogle Scholar
  59. 59.
    Y.Z. Wang, S.J. Wang, Z.Y. Hou, J.Z. Gu, Phys. Rev. C 92, 064301 (2015)ADSCrossRefGoogle Scholar
  60. 60.
    T.L. Zhao, X.J. Bao, Phys. Rev. C 98, 064307 (2018)ADSCrossRefGoogle Scholar
  61. 61.
    Z.S. Ge, C. Li, J.J. Li, G. Zhang, B. Li et al., Phys. Rev. C 98, 034312 (2018)ADSCrossRefGoogle Scholar
  62. 62.
    V.K. Utyonkov, N.T. Brewer, Yu.Ts. Oganessian, K.P. Rykaczewski, F.Sh. Abdullin et al., Phys. Rev. C 92, 034609 (2015)ADSCrossRefGoogle Scholar
  63. 63.
    W.M. Seif, Hisham Anwer, A.R. Abdulghany, Ann. Phys. 401, 149 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhishuai Ge
    • 1
  • Gen Zhang
    • 1
    • 2
  • Shihui Cheng
    • 1
    • 2
  • Yuling Li
    • 3
  • Ning Su
    • 3
  • Wuzheng Guo
    • 3
  • Yu. S. Tsyganov
    • 4
  • Feng-Shou Zhang
    • 1
    • 2
    • 5
    Email author
  1. 1.Key Laboratory of Beam Technology of Ministry of Education, Beijing Radiation CenterBeijingChina
  2. 2.College of Nuclear Science and TechnologyBeijing Normal UniversityBeijingChina
  3. 3.Department of PhysicsBeijing Normal UniversityBeijingChina
  4. 4.Flerov Laboratory of Nuclear ReactionsJoint Institute for Nuclear ResearchDubnaRussia
  5. 5.Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of LanzhouLanzhouChina

Personalised recommendations