Advertisement

A new study of the 10B(p,\(\alpha_{1}\gamma\))7Be reaction from 0.35 to 1.8 MeV

  • A. CaciolliEmail author
  • R. Depalo
  • V. Rigato
Regular Article - Experimental Physics
  • 12 Downloads

Abstract.

The quantification of isotopes content in materials is extremely important in many research and industrial fields. Accurate determination of boron concentration is very critical in semiconductor, superconductor and steel industry, in environmental and medical applications as well as in nuclear and astrophysics research. The detection of B isotopes and of their ratio in synthetic and natural materials may be accomplished by gamma spectroscopy using the 10B(p,\( \alpha_{1}\gamma\))7Be and 11B(p,\(\gamma\))12C reactions at low proton energy. Here, the 10B(p,\( \alpha_{1}\gamma\))7Be cross section is reported in the center of mass energy range 0.35 to 1.8 MeV. The \( E_{\gamma} = 429\) keV \(\gamma\) rays were detected at \( 45^{\circ}\) and \( 90^{\circ}\) using a NaI(Tl) and an HPGe detectors, respectively. In the presented energy range, previous cross section data revealed discrepancies and normalisation issues. Existing data are compared to the new absolute measurement and discussed. The present data have been subtracted from a previous measurement of the total cross section to derive the contribution of the \( \alpha_{0}\) channel.

References

  1. 1.
    J. Mayer, E. Rimini, Ion Beam Handbook for Material Analysis, 1st edition (Academic Press, 1977)Google Scholar
  2. 2.
    J.R. Tesmer, M. Nastasi, Handbook of Modern Ion Beam Analysis (Materials Research Society, Pittsburgh, Pa. 1995 and 2nd edition 2010)Google Scholar
  3. 3.
    L.R. Doolittle, Nucl. Instrum. Methods Phys. Res. B 9, 344 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    M. Mayer, AIP Conf. Proc. 475, 541 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    C. Jeynes, M. Bailey, N. Bright, M. Christopher, G. Grime, B. Jones, V. Palitsin, R. Webb, Nucl. Instrum. Methods Phys. Res. B 271, 107 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    C. Jeynes, R.P. Webb, A. Lohstroh, Rev. Accel. Sci. Technol. 04, 41 (2011)CrossRefGoogle Scholar
  7. 7.
    IBANDL database, IAEA (2019), http://www-nds.iaea.org/ibandl/
  8. 8.
    R. Sah, P. Brown, Microchem. J. 56, 285 (1997)CrossRefGoogle Scholar
  9. 9.
    R. Mateus, A. Jesus, M. Fonseca, H. Luís, J. Ribeiro, Nucl. Instrum. Methods Phys. Res. B 264, 340 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    M.V. Moro, T.F. Silva, G.F. Trindade, N. Added, M.H. Tabacniks, AIP Conf. Proc. 1625, 120 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    C. Spitaleri, S.M.R. Puglia, M. La Cognata, L. Lamia, S. Cherubini, A. Cvetinovic, G. D’Agata, M. Gulino, G.L. Guardo, I. Indelicato et al., Phys. Rev. C 95, 035801 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    A. Caciolli, R. Depalo, C. Broggini, M. La Cognata, L. Lamia, R. Menegazzo, L. Mou, S.M.R. Puglia, V. Rigato, S. Romano et al., Eur. Phys. J. A 52, 136 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    A. Brown, C. Snyder, W. Fowler, C. Lauritsen, Phys. Rev. 82, 159 (1951)ADSCrossRefGoogle Scholar
  14. 14.
    R.B. Day, T. Huus, Phys. Rev. 95, 1003 (1954)ADSCrossRefGoogle Scholar
  15. 15.
    J.W. Cronin, Phys. Rev. 101, 298 (1956)ADSCrossRefGoogle Scholar
  16. 16.
    S.E. Hunt, R.A. Pope, W.W. Evans, Phys. Rev. 106, 1012 (1957)ADSCrossRefGoogle Scholar
  17. 17.
    A. Lagoyannis, K. Preketes-Sigalas, M. Axiotis, V. Foteinou, S. Harissopulos, M. Kokkoris, P. Misaelides, V. Paneta, N. Patronis, Nucl. Instrum. Methods Phys. Res. B 342, 271 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    C. Iliadis, Nuclear Physics of Stars, 2nd edition (Wiley-VCH, Weinheim, 2015)Google Scholar
  19. 19.
    A. Caciolli, D.A. Scott, A. Di Leva, A. Formicola, M. Aliotta, M. Anders, A. Bellini, D. Bemmerer, C. Broggini, M. Campeggio et al., Eur. Phys. J. A 48, 144 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    G. Xhixha, G.P. Bezzon, C. Broggini, G.P. Buso, A. Caciolli, I. Callegari, S. De Bianchi, G. Fiorentini, E. Guastaldi, M. Kaçeli Xhixha et al., J. Radioanal. Nucl. Chem. 295, 445 (2013)CrossRefGoogle Scholar
  21. 21.
    M. Marta, E. Trompler, D. Bemmerer, R. Beyer, C. Broggini, A. Caciolli, M. Erhard, Z. Fülöp, E. Grosse, G. Gyürky et al., Phys. Rev. C 81, 055807 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    A. Caciolli, C. Mazzocchi, V. Capogrosso, D. Bemmerer, C. Broggini, P. Corvisiero, H. Costantini, Z. Elekes, A. Formicola, Z. Fülöp et al., Astron. Astrophys. 533, A66 (2011)CrossRefGoogle Scholar
  23. 23.
    M. Chiari, G. Ferraccioli, B. Melon, A. Nannini, A. Perego, L. Salvestrini, A. Lagoyannis, K. Preketes-Sigalas, Nucl. Instrum. Methods Phys. Res. B 366, 77 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    T. Rauscher, G. Raimann, Phys. Rev. C 53, 2496 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Università degli Studi di Padova, Dipartimento di Fisica e AstronomiaPadovaItaly
  2. 2.INFN Sezione di PadovaPadovaItaly
  3. 3.INFN Laboratori Nazionali di LegnaroLegnaro, PadovaItaly

Personalised recommendations