Advertisement

A novel method for the measurement of half-lives and decay branching ratios of exotic nuclei

  • Ivan Miskun
  • Timo Dickel
  • Israel MardorEmail author
  • Christine Hornung
  • Daler Amanbayev
  • Samuel Ayet San Andrés
  • Julian Bergmann
  • Jens Ebert
  • Hans Geissel
  • Magdalena Górska
  • Florian Greiner
  • Emma Haettner
  • Wolfgang R. Plaß
  • Sivaji Purushothaman
  • Christoph Scheidenberger
  • Ann-Kathrin Rink
  • Helmut Weick
  • Soumya Bagchi
  • Paul Constantin
  • Satbir Kaur
  • Wayne Lippert
  • Bo Mei
  • Iain Moore
  • Jan-Hendrick Otto
  • Stephane Pietri
  • Ilkka Pohjalainen
  • Andrej Prochazka
  • Christophe Rappold
  • Moritz P. Reiter
  • Yoshiki K. Tanaka
  • John S. Winfield
  • For the Super-FRS Experiment Collaboration
Open Access
Regular Article - Experimental Physics
  • 136 Downloads

Abstract.

A novel method for simultaneous measurement of masses, Q-values, isomer excitation energies, half-lives and decay branching ratios of exotic nuclei has been demonstrated. The method includes first use of a stopping cell as an ion trap, combining storage of mother and daughter nuclides for variable durations in a cryogenic stopping cell (CSC), and afterwards the identification and counting of them by a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). We utilized our method to record the decay and growth of the 216Po and 212Pb isotopes (alpha decay) and of the 119m2Sb isomer (\(t_{1/2} = 850\pm 90\) ms) and 119gSb isotope (isomer transition), obtaining half-lives consistent with literature values. The amount of non-nuclear-decay losses in the CSC up to \(\sim 10\) s is negligible, which exhibits its extraordinary cleanliness. For 119Sb isotopes, we present the first direct measurements of the mass of its ground state, and the excitation energy and decay branching ratios of its second isomeric state (119m2Sb). This resolves discrepancies in previous excitation energy data, and is the first direct evidence that the 119m2Sb isomer decays dominantly via \(\gamma\) emission. These results pave the way for the measurement of branching ratios of exotic nuclei.

References

  1. 1.
    C. Iliadis, Nuclear Physics of Stars (Wiley-VCH Verlag GmbH & Co, 2015)Google Scholar
  2. 2.
    M.J.G. Borge, Phys. Scr. 2013, 014013 (2013)CrossRefGoogle Scholar
  3. 3.
    I. Dillmann, A. Tarifeo-Saldivia, Nucl. Phys. News 28, 28 (2018)CrossRefGoogle Scholar
  4. 4.
    G. Lorusso, A. Becerril, A. Amthor, T. Baumann, D. Bazin, J.S. Berryman, B.A. Brown, R.H. Cyburt, H.L. Crawford, A. Estrade et al., Phys. Rev. C 86, 014313 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    I. Mukha, E. Roeckl, L. Batist, A. Blazhev, J. Döring, H. Grawe, L. Grigorenko, M. Huyse, Z. Janas, R. Kirchner et al., Nature 439, 298 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    T. Eronen, A. Kankainen, J. Äystö, Prog. Part. Nucl. Phys. 91, 259 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    A. Herlert, S. Van Gorp, D. Beck, K. Blaum, M. Breitenfeldt, R.B. Cakirli, S. George, U. Hager, F. Herfurth, A. Kellerbauer et al., Eur. Phys. J. A 48, 97 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    R. Wolf, D. Atanasov, K. Blaum, S. Kreim, D. Lunney, V. Manea, M. Rosenbusch, L. Schweikhard, A. Welker, F. Wienholtz et al., Nucl. Instrum. Methods Phys. Res. B 376, 275 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    B. Franzke, H. Geissel, G. Münzenberg, Mass Spectrom. Rev. 27, 428 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    H. Miyatake, M. Wada, X.Y. Watanabe, Y. Hirayama, P. Schury, M. Ahmed, H. Ishiyama, S.C. Jeong, Y. Kakiguchi, S. Kimura et al., AIP Conf. Proc. 1947, 020018 (2018)CrossRefGoogle Scholar
  11. 11.
    R.M. Yee, N.D. Scielzo, P.F. Bertone, F. Buchinger, S. Caldwell, J.A. Clark, C.M. Deibel, J. Fallis, J.P. Greene, S. Gulick et al., Phys. Rev. Lett. 110, 092501 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    R.E. Shroy, A.K. Gaigalas, G. Schatz, D.B. Fossan, Phys. Rev. C 19, 1324 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    S. Lunardi, P.J. Daly, F. Soramel, C. Signorini, B. Fornal, G. Fortuna, A.M. Stefanini, R. Broda, W. Meczynski, J. Blomqvist, Z. Phys. A 328, 487 (1987)ADSGoogle Scholar
  14. 14.
    M.G. Porquet, T. Venkova, R. Lucas, A. Astier, A. Bauchet, I. Deloncle, A. Prévost, F. Azaiez, G. Barreau, A. Bogachev et al., Eur. Phys. J. A 24, 39 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    C.B. Moon, G.D. Dracoulis, R.A. Bark, A.P. Byrne, P.A. Davidson, T. Kibedi, G.J. Lane, A.N. Wilson, J. Korean Phys. Soc. 59, 1539 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    W.R. Plaß, T. Dickel, S. Purushothaman, P. Dendooven, H. Geissel, J. Ebert, E. Haettner, C. Jesch, M. Ranjan, M.P. Reiter et al., Nucl. Instrum. Methods B 317, 457 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    H. Geissel, P. Armbruster, K. Behr, A. Brünle, K. Burkard, M. Chen, H. Folger, B. Franczak, H. Keller, O. Klepper et al., Nucl. Instrum. Methods B 70, 286 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    M. Ranjan, P. Dendooven, S. Purushothaman, T. Dickel, M. Reiter, S. Ayet San Andrés, E. Haettner, I. Moore, N. Kalantar-Nayestanaki, H. Geissel et al., Nucl. Instrum. Methods A 770, 87 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    T. Dickel, W.R. Plaß, A. Becker, U. Czok, H. Geissel, E. Haettner, C. Jesch, W. Kinsel, M. Petrick, C. Scheidenberger et al., Nucl. Instrum. Methods A 777, 172 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    T. Kubo, Nucl. Instrum. Methods Phys. Res. B 204, 97 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    O.B. Tarasov, D. Bazin, Nucl. Instrum. Methods Phys. Res. B 266, 4657 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    N. Iwasa, H. Geissel, G. Münzenberg, C. Scheidenberger, T. Schwab, H. Wollnik, Nucl. Instrum. Methods Phys. Res. B 126, 284 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    J.F. Ziegler, M. Ziegler, J. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    S. Ayet San Andrés, C. Hornung, J. Ebert, W.R. Plaß, T. Dickel, H. Geissel, C. Scheidenberger, J. Bergmann, F. Greiner, E. Haettner et al., Phys. Rev. C 99, 064313 (2019)ADSCrossRefGoogle Scholar
  25. 25.
    S. Purushothaman, S. Ayet San Andrés, J. Bergmann, T. Dickel, J. Ebert, H. Geissel, C. Hornung, W.R. Plaß, C. Rappold, C. Scheidenberger et al., Int. J. Mass Spectrom. 421, 245 (2017)CrossRefGoogle Scholar
  26. 26.
    H. Bateman, Proc. Cambridge Philos. Soc. 15, 423 (1910)Google Scholar
  27. 27.
    W.R. Plaß, T. Dickel, I. Mardor, S. Pietri, H. Geissel, C. Scheidenberger, D. Amanbayev, S. Ayet San Andrés, J. Aysto, D. Balabanski, to be published in Hyperfine Interact. (2019)Google Scholar
  28. 28.
    I. Miskun, A.K. Rink, F. Greiner, S. Ayet San Andrés, S. Bagchi, J. Bergmann, P. Constantin, T. Dickel, J. Ebert, A. Finley et al., GSI Sci. Rep. 2017-1, 174 (2017)Google Scholar
  29. 29.
    G. Audi, F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, Chin. Phys. C 41, 030001 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    A.K. Jain, B. Maheshwari, S. Garg, M. Patial, B. Singh, Nucl. Data Sheets 128, 1 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    D. Symochko, E. Browne, J. Tuli, Nucl. Data Sheets 110, 2945 (2009) data extracted from the ENSDF database, version 2019-02-14ADSCrossRefGoogle Scholar
  32. 32.
    M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu, Chin. Phys. C 41, 030003 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    H.G. Dehmelt, Advances in Atomic and Molecular Physics, Vol. 3, edited by D.R. Bates, I. Estermann (Academic Press, 1968) pp. 53--72Google Scholar
  34. 34.
    M.P. Reiter, A.K. Rink, T. Dickel, E. Haettner, F. Heiße, W.R. Plaß, S. Purushothaman, F. Amjad, S. Ayet San Andrés, J. Bergmann et al., Nucl. Instrum. Methods B 376, 240 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    G. Wu, R.G. Cooks, Z. Ouyang, M. Yu, W.J. Chappell, W.R. Plaß, J. Am. Soc. Mass Spectrom. 17, 1216 (2006)CrossRefGoogle Scholar
  36. 36.
    W. Pla, T. Dickel, B. Fabian, E. Haettner, An advanced concept for mass spectrometry simulations - The ion trajectory simulation program ITSIM 6, in Proceedings of the 56th ASMS Conference on Mass Spectrometry and Allied Topics, Denver, Colorado, USA (ASMS, 2008) MP 015Google Scholar
  37. 37.
    E. Haettner, B. Franczak, H. Geissel, T. Dickel, S. Pietri, W. Plaß, A. Prochazka, S. Purushothaman, C. Scheidenberger, Y. Tanaka, Nucl. Instrum. Methods Phys. Res. B,  https://doi.org/10.1016/j.nimb.2019.04.025
  38. 38.
    H. Geissel, H. Weick, M. Winkler, G. Münzenberg, V. Chichkine, M. Yavor, T. Aumann, K.H. Behr, M. Böhmer, A. Brünle et al., Nucl. Instrum. Methods Phys. Res. B 204, 71 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    T. Dickel, W.R. Plaß, H. Geissel, F. Heiße, I. Miskun, S. Purushothman, M.P. Reiter, A.K. Rink, C. Scheidenberger, Nucl. Instrum. Methods Phys. Res. B 376, 216 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    A. Kankainen, V.V. Elomaa, L. Batist, S. Eliseev, T. Eronen, U. Hager, J. Hakala, A. Jokinen, I.D. Moore, Y.N. Novikov et al., Phys. Rev. Lett. 101, 142503 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    W.R. Plaß, T. Dickel, S. Ayet San Andrés, S. Bagchi, D. Balabanski, S. Beck, P. Constantin, T. Eronen, H. Geissel, F. Greiner et al., GSI Sci. Rep. 2018-1, 115 (2018)Google Scholar
  42. 42.
    A. Evdokimov, I. Dillmann, M. Marta, F. Bosch, A. Dolinskii, C. Kozhuharov, Y. Litvinov, F. Nolden, M. Steck, H. Weick et al., PoS NIC XII, 115 (2012)Google Scholar
  43. 43.
    IAEA CRP on a Reference Database for Beta-Delayed Neutron Emission, https://www-nds.iaea.org/beta-delayed-neutron (2017)
  44. 44.
    I. Mardor, T. Dickel, S. Ayet San Andrés, S. Bagchi, S. Beck, H. Geissel, F. Greiner, E. Haettner, C. Hornung, D. Kostyleva et al., GSI Sci. Rep. 2018-1, 114 (2018)Google Scholar
  45. 45.
    D. Pérez-Loureiro, J. Benlliure, J. Díaz-Cortes, J.L. Rodríguez-Sánchez, H. Álvarez-Pol, B. Blank, E. Casarejos, D. Dragosavac, V. Föhr, M. Gascón et al., Phys. Rev. C 99, 054606 (2019)ADSCrossRefGoogle Scholar
  46. 46.
    T. Dickel, P. Constantin, J. Winfield, S. Ayet San Andrés, S. Bagchi, D. Balabanski, S. Beck, H. Geissel, F. Greiner, E. Haettner et al., GSI Sci. Rep. 2018-1, 112 (2018)Google Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Ivan Miskun
    • 1
  • Timo Dickel
    • 1
    • 2
  • Israel Mardor
    • 3
    • 4
    Email author
  • Christine Hornung
    • 1
  • Daler Amanbayev
    • 1
  • Samuel Ayet San Andrés
    • 1
    • 2
  • Julian Bergmann
    • 1
  • Jens Ebert
    • 1
  • Hans Geissel
    • 1
    • 2
  • Magdalena Górska
    • 2
  • Florian Greiner
    • 1
  • Emma Haettner
    • 2
  • Wolfgang R. Plaß
    • 1
    • 2
  • Sivaji Purushothaman
    • 2
  • Christoph Scheidenberger
    • 1
    • 2
  • Ann-Kathrin Rink
    • 1
  • Helmut Weick
    • 2
  • Soumya Bagchi
    • 1
    • 2
    • 6
  • Paul Constantin
    • 5
  • Satbir Kaur
    • 6
  • Wayne Lippert
    • 1
  • Bo Mei
    • 5
  • Iain Moore
    • 7
  • Jan-Hendrick Otto
    • 1
  • Stephane Pietri
    • 2
  • Ilkka Pohjalainen
    • 7
  • Andrej Prochazka
    • 2
  • Christophe Rappold
    • 1
    • 2
  • Moritz P. Reiter
    • 1
    • 8
  • Yoshiki K. Tanaka
    • 2
  • John S. Winfield
    • 2
  • For the Super-FRS Experiment Collaboration
  1. 1.II. Physikalisches InstitutJustus-Liebig-Universität GießenGießenGermany
  2. 2.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  3. 3.Tel Aviv UniversityTel AvivIsrael
  4. 4.Soreq Nuclear Research CenterYavneIsrael
  5. 5.IFIN-HH/ELI-NPMăgurele - BucharestRomania
  6. 6.Saint Mary’s UniversityHalifaxCanada
  7. 7.University of JyväskyläJyväskyläFinland
  8. 8.TRIUMFVancouverCanada

Personalised recommendations