Advertisement

Probing confinement by direct photons and dileptons

  • V. V. Goloviznin
  • A. V. Nikolskii
  • A. M. SnigirevEmail author
  • G. M. Zinovjev
Regular Article - Theoretical Physics
  • 6 Downloads

Abstract.

The intensive synchrotron radiation resulting from quarks interacting with the collective confining color field in relativistic heavy ion collisions is discussed. The spectrum of photons with large transverse momentum is calculated and compared with the experimental data to demonstrate the feasibility of this type of radiation. A study of the earlier predicted azimuthal anisotropy in the angular distribution of dileptons with respect to the three-momentum of the pair is performed as well. This boundary-induced mechanism of lepton pair production is shown to possess the features that are distinctly different from the standard mechanisms and can potentially provide an efficient probe of quark-gluon plasma formation.

References

  1. 1.
    J. Schukraft, arXiv:1705.02646 [hep-ex]Google Scholar
  2. 2.
    C. Shen, Nucl. Phys. A 956, 184 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    J.-F. Paquet, J. Phys. Conf. Ser. 832, 012035 (2017)CrossRefGoogle Scholar
  4. 4.
    E. Masson, arXiv:1811.02220 [hep-ex]Google Scholar
  5. 5.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 104, 132301 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    ALICE Collaboration (J. Adams et al.), Phys. Lett. B 754, 235 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 109, 122302 (2012)CrossRefGoogle Scholar
  8. 8.
    R. Chatterjee, E.S. Frodermann, U.W. Heinz, D.K. Srivastava, Phys. Rev. Lett. 96, 202302 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    C. Gale, Y. Hitaka, S. Jeon, S. Lin, J.-F. Paquet, R. Pisarski, D. Satow, V. Skokov, G. Vujanovic, Phys. Rev. Lett. 114, 072301 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    R. Pisarski, Phys. Rev. D 74, 121703 (2006)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Dumitru, Y. Guo, T. Hidaka, C.P.K. Altes, R. Pisarski, Phys. Rev. D 86, 105017 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    M. Chiu, T.K. Hemmick, V. Khachatryan, A. Leonidov, J. Liao, L. McLerran, Nucl. Phys. A 900, 16 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    R. Chatterjee, D.K. Srivastava, U.W. Heinz, C. Gale, Phys. Rev. C 75, 054909 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    H. van Hees, C. Gale, R. Rapp, Phys. Rev. C 84, 054906 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    G. Basar, D. Kharzeev, V. Skokov, Phys. Rev. Lett. 109, 202303 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    A. Bzdak, V. Skokov, Phys. Rev. Lett. 110, 192301 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    F.-M. Liu, S.-X. Liu, Phys. Rev. C 89, 034906 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    O. Linnyk, V.P. Konchakovski, W. Cassing, E.L. Bratkovskaya, Phys. Rev. C 88, 034904 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    B.G. Zakharov, Eur. Phys. J. C 76, 609 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    B.G. Zakharov, JETP Lett. 106, 283 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    G. Vujanovic, J.-F. Paquet, S. Ryu, C. Shen, G. Denicol, S. Jeon, C. Gale, U. Heinz, arXiv:1704.04687 [nucl-th]Google Scholar
  22. 22.
    V.V. Goloviznin, A.M. Snigirev, G.M. Zinovjev, JETP Lett. 98, 61 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    V.V. Goloviznin, A.M. Snigirev, G.M. Zinovjev, JETP Lett. 107, 527 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    V.V. Goloviznin, G.M. Zinov’ev, A.M. Snigirev, Yad Fiz. 47, 886 (1988) (Sov. J. Nucl. Phys. 47Google Scholar
  25. 25.
    V.V. Goloviznin, G.M. Zinov’ev, A.M. Snigirev, Yad Fiz. 48, 1826 (1988) (Sov. J. Nucl. Phys. 48Google Scholar
  26. 26.
    V.V. Goloviznin, A.M. Snigirev, G.M. Zinovjev, Z. Phys. C 38, 255 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    V.V. Goloviznin, A.M. Snigirev, G.M. Zinovjev, Z. Phys. C 45, 335 (1989)CrossRefGoogle Scholar
  28. 28.
    A. Casher, H. Neuberger, S. Nussinov, Phys. Rev. D 20, 179 (1979)ADSCrossRefGoogle Scholar
  29. 29.
    B. Banerjee, N. Glendenning, T. Matsui, Phys. Lett. B 127, 453 (1983)ADSCrossRefGoogle Scholar
  30. 30.
    V.V. Goloviznin, A.M. Snigirev, G.M. Zinovjev, Phys. Lett. B 211, 167 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics, 2nd edition (Pergamon Press, Oxford, 1982) (Russian original, Nauka, Moscow, 1980, Vol. IV)Google Scholar
  32. 32.
    A.A. Sokolov, I.M. Ternov, Synchrotron Radiation (Nauka, Moscow, 1966) (in Russian)Google Scholar
  33. 33.
    J.D. Bjorken, Phys. Rev. D 27, 140 (1983)ADSCrossRefGoogle Scholar
  34. 34.
    B. Sinha, Phys. Lett. B 128, 91 (1983)ADSCrossRefGoogle Scholar
  35. 35.
    D. Srivastava, B. Sinha, Phys. Rev. C 64, 034902 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    I.P. Lokhtin, A.A. Alkin, A.M. Snigirev, Eur. Phys. J. C 75, 452 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    I.P. Lokhtin, A.M. Snigirev, Eur. Phys. J. C 45, 211 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    E. Speranza, A. Jaiswal, B. Friman, Phys. Lett. B 782, 395 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    G. Baym, T. Hatsuda, M. Strickland, Phys. Rev. C 95, 044907 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    G. Baym, T. Hatsuda, Prog. Theor. Exp. Phys. 2015, 031DO1 (2015)CrossRefGoogle Scholar
  41. 41.
    V.G. Zhulego, V.N. Rodionov, A.I. Studenikin, Yad Fiz. 36, 524 (1982) (Sov. J. Nucl. Phys. 36Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • V. V. Goloviznin
    • 1
  • A. V. Nikolskii
    • 2
  • A. M. Snigirev
    • 3
    • 2
    Email author
  • G. M. Zinovjev
    • 1
  1. 1.Bogolyubov Institute for Theoretical PhysicsNational Academy of Sciences of UkraineKievUkraine
  2. 2.Bogoliubov Laboratory of Theoretical PhysicsJINRDubnaRussia
  3. 3.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations