Advertisement

Quark matter description in a Tsallis entropy approach

  • Carolina Barboza Mendoza
  • G. Herrera CorralEmail author
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract.

A non-additive entropy is used to describe quark matter. We consider a non-extensive thermodynamic system in the framework of the MIT bag model of hadrons, in order to consider the correlation between quarks and gluons due to strong interactions. The non-additive entropy of the system describes quarks and gluons as two probabilistically independent subsystems. We analyze the phase diagram in terms of the correlation parameter q that enters the sum of entropies in the Tsallis prescription. For the case of non-zero chemical potentials it can be shown that the systems with \( q\le q_{\max}\) may be associated with the weakly coupled systems while those with \(q > q_{\max}\) are more correlated. Furthermore, we find that the critical temperature for the hadron increases as the correlation between quarks and gluons increases, according to the expectations.

References

  1. 1.
    D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973)ADSCrossRefGoogle Scholar
  2. 2.
    H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973)ADSCrossRefGoogle Scholar
  3. 3.
    N. Cabibbo, G. Parisi, Phys. Lett. B 59, 67 (1975)ADSCrossRefGoogle Scholar
  4. 4.
    J.C. Collins, M.J. Perry, Phys. Rev. Lett. 34, 1353 (1975)ADSCrossRefGoogle Scholar
  5. 5.
    A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf, Phys. Rev. D 9, 3471 (1974)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (Springer Science & Business Media, 2009)Google Scholar
  8. 8.
    C. Tsallis, Z. Gonzalez Arenas, EPJ Web of Conferences 71, 00132 (2014)CrossRefGoogle Scholar
  9. 9.
    I. Bediaga, E.M. Curado, J.M. de Miranda, Physica A 286, 156 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    M. Althoff et al., Z. Phys. C 22, 307 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    V. Khachatryan et al., Phys. Rev. Lett. 105, 022002 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    V. Khachatryan et al., JHEP 02, 041 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    L. Marques, J. Cleymans, A. Deppman, Phys. Rev. D 91, 054025 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    T. Bhattacharyya, J. Cleymans, L. Marques, S. Mogliacci, M.W. Paradza, J. Phys. G 45, 055001 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    A. Khuntia, S. Tripathy, R. Sahoo, J. Cleymans, Eur. Phys. J. A 53, 103 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    K. Saraswat, P. Shukla, V. Singh, J. Phys. Commun. 2, 035003 (2018)CrossRefGoogle Scholar
  17. 17.
    Z. Tang, Y. Xu, L. Ruan, G. van Buren, F. Wang, Z. Xu, Phys. Rev. C 79, 051901 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    E. Megías, D. Menezes, A. Deppman, Physica A 421, 15 (2015)CrossRefGoogle Scholar
  19. 19.
    P. HG Cardoso, T. Nunes da Silva, A. Deppman, D.P. Menezes, Eur. Phys. J. A 53, 191 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    J. Cleymans, K. Redlich, Phys. Rev. Lett. 81, 5284 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    J. Cleymans, K. Redlich, Phys. Rev. C 60, 054908 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    F. Caruso, C. Tsallis, Phys. Rev. E 78, 021102 (2008)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2000)Google Scholar
  24. 24.
    S. Furuichi, arXiv:quant-ph/0504023 (2005)Google Scholar
  25. 25.
    A. Vidiella-Barranco, Phys. Lett. A 260, 335 (1999)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Abe, Phys. Rev. A 65, 052323 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    S. Abe, Physica A 306, 316 (2002)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Vershynina, J. Math. Phys. 60, 022201 (2019)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    N. Canosa, R. Rossignoli, Phys. Rev. Lett. 88, 170401 (2002)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    M. Rahaman, T. Bhattacharyya, J.E. Alam, arXiv:1906.02893 (2019)Google Scholar
  31. 31.
    A. Deppman, Phys. Rev. D 93, 054001 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    A. Deppman, T. Frederico, E. Megías, D. Menezes, Entropy 20, 633 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    A. Deppman, E. Megias, D. Menezes, arXiv:1905.06382 (2019)Google Scholar
  34. 34.
    A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, Phys. Rev. D 10, 2599 (1974)ADSCrossRefGoogle Scholar
  35. 35.
    C. Tsallis, Eur. Phys. J. A 40, 257 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    A. Drago, A. Lavagno, P. Quarati, Physica A 344, 472 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    J. Rozynek, Physica A 440, 27 (2015)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    D.H. Rischke, B.L. Friman, H. Stocker, W. Greiner, J. Phys. G 14, 191 (1988)ADSCrossRefGoogle Scholar
  39. 39.
    A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561, 321 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de FísicaCentro de Investigación y de Estudios Avanzados del IPNMexico CityMexico

Personalised recommendations