Advertisement

Ratio method for estimating uncertainty in calculated gamma cascades

  • A. M. LewisEmail author
  • L. A. Bernstein
  • T. Kawano
  • D. Neudecker
Regular Article - Theoretical Physics
  • 30 Downloads

Abstract.

The assessment of uncertainty on deduced quantities obtained through both measurement and modeling must include contributions from both components. There are several methods to estimate the uncertainty due to modeling, such as the parametric uncertainty and that stemming from model bias. However, in the case where experimental data exists for partial cross sections, such as discrete gammas emitted in the de-excitation of the product nucleus following the reaction, the discrepancy between the measured and modeled gamma cascades provides more information and allows for uncertainty estimation that can account for all types of model and data uncertainty. This work presents a method for estimating that uncertainty, using ratios of gammas to get a measure of the accuracy of different parts of the modeled gamma cascade. The gamma with the lowest intensity uncertainty is shown to be the best for determining the channel cross section with realistic uncertainties, indicating that it should be used rather than the most intense gamma or a sum of gammas. This method provides both a simple procedure for calculating realistic uncertainties and identifies the best gamma for use in converting a set of measured partial gamma cross sections to the deduced total channel cross section.

References

  1. 1.
    D. Smith, N. Otuka, Nucl. Data Sheets 113, 3006 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    R.M. Bahran, Los Alamos National Laboratory Report LA-UR-18-22315, Tech. rep. (2018)Google Scholar
  3. 3.
    D. Neudecker et al., EPJ Nucl. Sci. Technol. 4, 21 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    R. Capote et al., Nucl. Data Sheets 131, 1 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    P. Helgesson, Approaching well-founded comprehensive nuclear data uncertainties: Fitting imperfect models to imperfect data, PhD Thesis, Uppsala Universitet (2018)Google Scholar
  6. 6.
    L. Leal et al., Nucl. Data Sheets 113, 3101 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    P. Helgesson, H. Sjöstrand, D. Rochman, Nucl. Data Sheets 145, 1 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    N. Fotiades et al., Phys. Rev. C 69, 024601 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    P.G. Young, E.D. Arthur, M.B. Chadwick, Los Alamos National Laboratory Report LA-12343-MS, Tech. rep. (1992)Google Scholar
  10. 10.
    D. Smith, Argonne National Laboratory Report ANL/NDM-166, Tech. rep. (2008)Google Scholar
  11. 11.
    R. Capote, in Reactor Dosimetry: 14th International Symposium, Vol. 9 (ASTM International, West Conshohocken, PA, 2012) pp. 179--196Google Scholar
  12. 12.
    A. Aravkin, in Proceedings of the 16th IFAC Symposium on System Identification (Elsevier, Brussels, 2012) pp. 125--130Google Scholar
  13. 13.
    A. Koning, D. Rochman, Ann. Nucl. Energy 35, 2024 (2008)CrossRefGoogle Scholar
  14. 14.
    D. Neudecker, R. Capote, H. Leeb, Nucl. Instrum. Methods A 723, 163 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    A.J. Koning, Eur. Phys. J. A 51, 184 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    T. Kawano et al., J. Nucl. Sci. Technol. 47, 462 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Herman et al., Nucl. Data Sheets 108, 2655 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    A. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    R. Capote et al., Nucl. Data Sheets 110, 3107 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    S. Ellison, Accredit. Qual. Assur. 3, 95 (1998)CrossRefGoogle Scholar
  21. 21.
    Krishichayan et al., Phys. Rev. C 96, 044623 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    D.A. Brown et al., Nucl. Data Sheets 148, 1 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    M.B. Chadwick et al., Nucl. Data Sheets 148, 189 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    N. Otuka et al., Nucl. Data Sheets 120, 272 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. M. Lewis
    • 1
    Email author
  • L. A. Bernstein
    • 1
    • 2
  • T. Kawano
    • 3
  • D. Neudecker
    • 3
  1. 1.Department of Nuclear EngineeringUniversity of California, BerkeleyBerkeleyUSA
  2. 2.Lawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations