Advertisement

Electromagnetic properties of low-lying states in neutron-deficient Hg isotopes: Coulomb excitation of 182Hg, 184Hg, 186Hg and 188Hg

  • K. Wrzosek-LipskaEmail author
  • K. Rezynkina
  • N. Bree
  • M. Zielińska
  • L. P. Gaffney
  • A. Petts
  • A. Andreyev
  • B. Bastin
  • M. Bender
  • A. Blazhev
  • B. Bruyneel
  • P. A. Butler
  • M. P. Carpenter
  • J. Cederkäll
  • E. Clément
  • T. E. Cocolios
  • A. N. Deacon
  • J. Diriken
  • A. Ekström
  • C. Fitzpatrick
  • L. M. Fraile
  • Ch. Fransen
  • S. J. Freeman
  • J. E. García-Ramos
  • K. Geibel
  • R. Gernhäuser
  • T. Grahn
  • M. Guttormsen
  • B. Hadinia
  • K. Hadyńska-Klȩk
  • M. Hass
  • P. -H. Heenen
  • R. -D. Herzberg
  • H. Hess
  • K. Heyde
  • M. Huyse
  • O. Ivanov
  • D. G. Jenkins
  • R. Julin
  • N. Kesteloot
  • Th. Kröll
  • R. Krücken
  • A. C. Larsen
  • R. Lutter
  • P. Marley
  • P. J. Napiorkowski
  • R. Orlandi
  • R. D. Page
  • J. Pakarinen
  • N. Patronis
  • P. J. Peura
  • E. Piselli
  • L. Próchniak
  • P. Rahkila
  • E. Rapisarda
  • P. Reiter
  • A. P. Robinson
  • M. Scheck
  • S. Siem
  • K. Singh Chakkal
  • J. F. Smith
  • J. Srebrny
  • I. Stefanescu
  • G. M. Tveten
  • P. Van Duppen
  • J. Van de Walle
  • D. Voulot
  • N. Warr
  • A. Wiens
  • J. L. Wood
Open Access
Regular Article - Experimental Physics

Abstract.

The neutron-deficient mercury isotopes serve as a classical example of shape coexistence, whereby at low energy near-degenerate nuclear states characterized by different shapes appear. The electromagnetic structure of even-mass 182-188 Hg isotopes was studied using safe-energy Coulomb excitation of neutron-deficient mercury beams delivered by the REX-ISOLDE facility at CERN. The population of \( 0^{+}_{1,2}\), \( 2^{+}_{1,2}\) and \( 4^{+}_{1}\) states was observed in all nuclei under study. Reduced E2 matrix elements coupling populated yrast and non-yrast states were extracted, including their relative signs. These are a sensitive probe of shape coexistence and may be used to validate nuclear models. The experimental results are discussed in terms of mixing of two different configurations and are compared with three different model calculations: the Beyond Mean Field model, the Interacting Boson Model with configuration mixing and the General Bohr Hamiltonian. Partial agreement with experiment was observed, hinting to missing ingredients in the theoretical descriptions.

References

  1. 1.
    K. Heyde, J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    K. Wrzosek-Lipska, L.P. Gaffney, J. Phys. G 43, 024012 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    J. Bonn, G. Huber, H.J. Kluge, L. Kugler, E.W. Ottenothers, Phys. Lett. B 38, 308 (1972)ADSCrossRefGoogle Scholar
  4. 4.
    G. Ulm et al., Z. Phys. A 325, 247 (1986)ADSGoogle Scholar
  5. 5.
    P. Dabkiewicz, F. Buchinger, H. Fischer, H.J. Kluge, H. Kremmling, T. Kuhl, A.C. Muller, H.A. Schuessler, Phys. Lett. B 82, 199 (1979)ADSCrossRefGoogle Scholar
  6. 6.
    B. Marsh et al., Nat. Phys. 14, 1163 (2018)CrossRefGoogle Scholar
  7. 7.
    D. Proetel, R.M. Diamond, F.S. Stephens, Phys. Lett. B 48, 102 (1974)ADSCrossRefGoogle Scholar
  8. 8.
    N. Rud, D. Ward, H.R. Andrews, R.L. Graham, J.S. Geiger, Phys. Rev. Lett. 31, 1421 (1973)ADSCrossRefGoogle Scholar
  9. 9.
    J.H. Hamilton et al., Phys. Rev. Lett. 35, 562 (1975)ADSCrossRefGoogle Scholar
  10. 10.
    J.D. Cole et al., Phys. Rev. Lett. 37, 1185 (1976)ADSCrossRefGoogle Scholar
  11. 11.
    W.C. Ma, A.V. Ramayya, J.H. Hamilton, S.J. Robinson, J.D. Cole, E.F. Zganjar, E.H. Spejewski, R. Bengtsson, W. Nazarewicz, J.Y. Zhang, Phys. Lett. B 167, 277 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    W.C. Ma, A.V. Ramayya, J.H. Hamilton, S.J. Robinson, M.E. Barclay, K. Zhao, J.D. Cole, E.F. Zganjar, E.H. Spejewski, Phys. Lett. B 139, 276 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    R. Julin, K. Helariutta, M. Muikku, J. Phys. G 27, R109 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    J. Elseviers et al., Phys. Rev. C. 84, 034307 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    M. Bender, P.H. Heenen, P.G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Yao, M. Bender, P.H. Heenen, Phys. Rev. C 87, 034322 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    E. Rapisarda et al., J. Phys. G: Nucl. Part. Phys. 44, 074001 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    M. Scheck et al., Phys. Rev. C 83, 037303 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    L.P. Gaffney et al., Phys. Rev. C 89, 024307 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    N. Bree et al., Phys. Rev. Lett. 112, 162701 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    L. Próchniak, G. Rohoziński, J. Phys. G: Nucl. Part. Phys. 36, 123101 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    J.E. García-Ramos, K. Heyde, Phys. Rev. C 89, 014306 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    O. Kester et al., Nucl. Instrum. Methods Phys. Res. B 204, 20 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    N. Warr et al., Eur. Phys. J. A 49, 40 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    A.N. Ostrowski, S. Cherubini, T. Davinson, D. Groombridge, A.M. Laird, A. Musumarra, A. Ninane, A. di Pietro, A.C. Shotter, P.J. Woods, Nucl. Instrum. Methods A 480, 448 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    D. Cline, Bull Am. Phys. Soc. 14, 726 (1969)Google Scholar
  27. 27.
    N. Bree et al., Nucl. Instrum. Methods B 360, 97 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    T. Kibédi, T.W. Burrows, M.B. Trzhaskovskaya, P.M. Davidson, C.W. Nestor, Nucl. Instrum. Methods Phys. Res. Sect. A 589, 202 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    N. Bree, Shape Coexistence in the Neutron-Deficient Mercury Isotopes Studied Through Coulomb Excitation PhD Thesis (KU Leuven, Belgium, 2014)Google Scholar
  30. 30.
    R.B. Firestone, V.S. Shirley, C.M. Baglin, S.Y. Frank Chu, J. Zipkin, Table of Isotopes, 8th edition (John Wiley & Sons Inc., 1996)Google Scholar
  31. 31.
    J.H. Hubbell, P.N. Trehan, N. Singh, B. Chand, D. Mehta, M.L. Garg, R.R. Garg, S. Singh, S. Puri, J. Phys. Chem. Ref. Data. 23, 339 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    C.M. Baglin, Nucl. Data. Sheets 99, 1 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    T. Czosnyka, D. Cline, C.Y. Wu, Bull. Am. Phys. Soc. 28, 745 (1983)Google Scholar
  34. 34.
    GOSIA User’s Manual, http://slcj.uw.edu.pl/en/gosia-code/
  35. 35.
    J.D. Cole et al., Phys. Rev. C 16, 2010 (1977)ADSCrossRefGoogle Scholar
  36. 36.
    R. Beraud, M. Meyer, M.G. Desthuilliers, C. Bourgeois, P. Kilcher, J. Letessier, Nucl. Phys. A 284, 221 (1977)ADSCrossRefGoogle Scholar
  37. 37.
    J.D. Cole et al., Phys. Rev. C 30, 1267 (1984)ADSCrossRefGoogle Scholar
  38. 38.
    T. Grahn et al., Phys. Rev. C 80, 014324 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    M. Scheck et al., Phys. Rev. C 81, 014310 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    P.K. Joshi et al., Int. J. Mod. Phys. E 3, 757 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    M. Zielińska, L.P. Gaffney, K. Wrzosek-Lipska, E. Clément, T. Grahn, N. Kesteloot, P. Napiorkowski, J. Pakarinen, P. Van Duppen, N. Warr, Eur. Phys. J. A 52, 99 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    J. Pakarinen et al., J. Phys. G 44, 064009 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    E. Clément et al., Phys. Rev. C 94, 054326 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    N. Kesteloot et al., Phys. Rev. C 92, 054301 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    K. Wrzosek-Lipska et al., Phys. Rev. C 86, 064305 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    N. Bijnens et al., Phys. Rev. C 58, 754 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    M. Bender, K. Rutz, P.G. Reinhard, J.A. Maruhn, Eur. Phys. J. A 7, 467 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, UK, 1987)Google Scholar
  49. 49.
    P.D. Duval, B.R. Barrett, Phys. Lett. B 100, 223 (1981)ADSCrossRefGoogle Scholar
  50. 50.
    P.D. Duval, B.R. Barrett, Nucl. Phys. A 376, 213 (1982)ADSCrossRefGoogle Scholar
  51. 51.
    B. Singh, Nucl. Data Sheets 95, 387 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    L. Próchniak, private communicationGoogle Scholar
  53. 53.
    K. Nomura, R. Rodríguez-Guzmán, L.M. Robledo, Phys. Rev. C 87, 064313 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    K. Nomura, T. Otsuka, P. Van Isacker, J. Phys. G 43, 024008 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    P. Van Duppen, M. Huyse, J.L. Wood, J. Phys. G 16, 441 (1990)ADSCrossRefGoogle Scholar
  56. 56.
    N. Kesteloot, Deformation and Mixing of Co-Existing Shapes in the Neutron-Deficient Polonium Isotopes PhD Thesis (KU Leuven, Belgium, 2015)Google Scholar
  57. 57.
    M.A.J. Mariscotti, G. Scharff-Goldhaber, B. Buck, Phys. Rev. 178, 1864 (1969)ADSCrossRefGoogle Scholar
  58. 58.
    C. Mueller-Gatermann et al., Phys. Rev. C 99, 054325 (2019)ADSCrossRefGoogle Scholar
  59. 59.
    E.A. Mccutchan, Nucl. Data Sheets 126, 151 (2015)ADSCrossRefGoogle Scholar
  60. 60.
    J.L. Wood, E.F. Zganjar, C.D. Coster, K. Heyde, Nucl. Phys. A 651, 323 (1999)ADSCrossRefGoogle Scholar
  61. 61.
    T. Kibedi, R.H. Spear, At. Data Nucl. Data Tables 89, 77 (2005)ADSCrossRefGoogle Scholar
  62. 62.
    E.L. Church, J. Weneser, Phys. Rev. 103, 1035 (1956)ADSCrossRefGoogle Scholar
  63. 63.
    J.E. García-Ramos, K. Heyde, private communicationGoogle Scholar
  64. 64.
    K. Kumar, Phys. Rev. Lett. 28, 249 (1972)ADSCrossRefGoogle Scholar
  65. 65.
    D. Cline, Annu. Rev. Nucl. Part. Sci. 36, 683 (1986)ADSCrossRefGoogle Scholar
  66. 66.
    K. Rezynkina, CERN-INTC 079 P-511 (2017)Google Scholar
  67. 67.
    P. Papadakis et al., Eur. Phys. J. A 54, 42 (2018)ADSCrossRefGoogle Scholar
  68. 68.
    K. Wrzosek-Lipska, CERN-INTC 063 P-364 (2012)Google Scholar
  69. 69.
    P. Van Duppen, CERN-INTC 044 I-110 (2010)Google Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • K. Wrzosek-Lipska
    • 1
    • 2
    Email author
  • K. Rezynkina
    • 2
    • 3
  • N. Bree
    • 2
  • M. Zielińska
    • 1
    • 4
  • L. P. Gaffney
    • 5
    • 2
    • 6
    • 7
  • A. Petts
    • 5
  • A. Andreyev
    • 2
    • 8
  • B. Bastin
    • 2
    • 9
  • M. Bender
    • 10
  • A. Blazhev
    • 11
  • B. Bruyneel
    • 11
  • P. A. Butler
    • 5
  • M. P. Carpenter
    • 12
  • J. Cederkäll
    • 13
    • 6
  • E. Clément
    • 9
    • 6
  • T. E. Cocolios
    • 2
    • 6
    • 14
  • A. N. Deacon
    • 14
  • J. Diriken
    • 2
    • 15
  • A. Ekström
    • 13
  • C. Fitzpatrick
    • 14
  • L. M. Fraile
    • 16
  • Ch. Fransen
    • 11
  • S. J. Freeman
    • 14
  • J. E. García-Ramos
    • 17
  • K. Geibel
    • 11
  • R. Gernhäuser
    • 18
  • T. Grahn
    • 19
    • 20
  • M. Guttormsen
    • 21
  • B. Hadinia
    • 7
    • 22
  • K. Hadyńska-Klȩk
    • 1
  • M. Hass
    • 23
  • P. -H. Heenen
    • 24
  • R. -D. Herzberg
    • 5
  • H. Hess
    • 11
  • K. Heyde
    • 25
  • M. Huyse
    • 2
  • O. Ivanov
    • 2
  • D. G. Jenkins
    • 8
  • R. Julin
    • 19
  • N. Kesteloot
    • 2
    • 15
  • Th. Kröll
    • 26
  • R. Krücken
    • 18
  • A. C. Larsen
    • 21
  • R. Lutter
    • 27
  • P. Marley
    • 8
  • P. J. Napiorkowski
    • 1
  • R. Orlandi
    • 2
    • 7
  • R. D. Page
    • 5
  • J. Pakarinen
    • 19
    • 20
  • N. Patronis
    • 2
    • 28
  • P. J. Peura
    • 19
  • E. Piselli
    • 6
  • L. Próchniak
    • 1
  • P. Rahkila
    • 19
  • E. Rapisarda
    • 29
    • 6
  • P. Reiter
    • 11
  • A. P. Robinson
    • 8
    • 30
  • M. Scheck
    • 5
    • 7
  • S. Siem
    • 21
  • K. Singh Chakkal
    • 23
  • J. F. Smith
    • 7
  • J. Srebrny
    • 1
  • I. Stefanescu
    • 2
    • 18
  • G. M. Tveten
    • 21
  • P. Van Duppen
    • 2
  • J. Van de Walle
    • 6
  • D. Voulot
    • 6
  • N. Warr
    • 11
  • A. Wiens
    • 11
  • J. L. Wood
    • 31
  1. 1.Heavy Ion LaboratoryUniversity of WarsawWarsawPoland
  2. 2.Instituut voor Kern- en StralingsfysicaKU LeuvenLeuvenBelgium
  3. 3.Université de Strasbourg, CNRS, IPHC UMR7178StrasbourgFrance
  4. 4.IRFU CEA, Université Paris-SaclayGif-sur-YvetteFrance
  5. 5.Oliver Lodge LaboratoryUniversity of LiverpoolLiverpoolUK
  6. 6.ISOLDECERNGeneva 23Switzerland
  7. 7.School of Engineering, Computing and Physical SciencesUniversity of the West of ScotlandPaisleyUK
  8. 8.Department of PhysicsUniversity of YorkYorkUK
  9. 9.GANIL CEA/DSM-CNRS/IN2P3CaenFrance
  10. 10.IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3Villeurbanne CedexFrance
  11. 11.Institut für KernphysikUniversität zu KölnKölnGermany
  12. 12.Physics DivisionArgonne National LaboratoryArgonneUSA
  13. 13.Physics DepartmentUniversity of LundLundSweden
  14. 14.School of Physics and AstronomyUniversity of ManchesterManchesterUK
  15. 15.Belgian Nuclear Research Centre SCK CENMolBelgium
  16. 16.Grupo de Física NuclearUniversidad Complutense de MadridMadridSpain
  17. 17.Departamento de Ciencias Integradas y Centro de Estudios Avanzados en Fısica, Matemáticas y ComputaciónUniversidad de HuelvaHuelvaSpain
  18. 18.Physics Department E12Technische Universität MünchenGarchingGermany
  19. 19.University of Jyväskylä, Department of PhysicsJyvaskylaFinland
  20. 20.Helsinki Institute of PhysicsUniversity of HelsinkiHelsinkiFinland
  21. 21.Department of PhysicsUniversity of OsloOsloNorway
  22. 22.Department of PhysicsUniversity of GuelphGuelphCanada
  23. 23.Department of Particle PhysicsWeizmann Institute of ScienceRehovotIsrael
  24. 24.Physique Nucléaire ThéoriqueUniversité Libre de BruxellesBruxellesBelgium
  25. 25.Department of Physics and AstronomyGhent UniversityGentBelgium
  26. 26.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  27. 27.Department of PhysicsLudwig Maximilian Universität MünchenGarchingGermany
  28. 28.Department of PhysicsThe University of IoanninaIoanninaGreece
  29. 29.Paul Scherrer InstitutVilligen PSISwitzerland
  30. 30.National Physical LaboratoryTeddingtonUK
  31. 31.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations