Advertisement

Thermodynamics conditions of matter in neutron star mergers

  • Albino PeregoEmail author
  • Sebastiano Bernuzzi
  • David Radice
Regular Article - Theoretical Physics
Part of the following topical collections:
  1. First joint gravitational wave and electromagnetic observations: Implications for nuclear and particle physicI

Abstract.

Matter in neutron star collisions reaches densities up to few times the nuclear saturation threshold, \(\rho_0\) and temperatures up to one hundred MeV. Understanding the structure and composition of such matter requires many-body non-perturbative calculations that are currently highly uncertain. Unique constraints on the neutron star matter are provided by gravitational-wave observations aided by numerical relativity simulations. In this work, we explore the thermodynamical conditions of matter along the merger dynamics. We consider 3 microphysical equations of state and numerical relativity simulations including approximate neutrino transport. The neutron star cores collision and their multiple bounces heat the initially cold matter to several tens of MeV. Streams of hot matter with initial densities \(\sim 1 - 2\rho_{0}\) move outwards and cool due to decompression and neutrino emission. The merger can result in a neutron star remnant with densities up to \( 3 -5\rho_{0}\) and temperatures \( \sim 50\) MeV. The highest temperatures are confined in an approximately spherical annulus at densities \( \sim\rho_0\). Such temperatures favour positron-neutron capture thus leading to a neutrino emission dominated by electron antineutrinos. We study the impact of trapped neutrinos on the remnant matter’s pressure, electron fraction and temperature and find that it has a negligible effect. Disks around neutron star or black hole remnant are neutron rich and not isentropic, but they differ in size, entropy and lepton fraction depending on the nature of the central object. In the presence of a black hole, disks are smaller and mostly transparent to neutrinos; in presence of a massive neutron star, they are more massive, geometrically and optically thick.

References

  1. 1.
    M. Shibata, K. Uryu, Phys. Rev. D 61, 064001 (2000) arXiv:gr-qc/9911058ADSCrossRefGoogle Scholar
  2. 2.
    Y. Sekiguchi, K. Kiuchi, K. Kyutoku, M. Shibata, Phys. Rev. Lett. 107, 211101 (2011) arXiv:1110.4442ADSCrossRefGoogle Scholar
  3. 3.
    S. Bernuzzi, D. Radice, C.D. Ott, L.F. Roberts, P. Moesta, F. Galeazzi, Phys. Rev. D 94, 024023 (2016) arXiv:1512.06397ADSCrossRefGoogle Scholar
  4. 4.
    D. Radice, A. Perego, K. Hotokezaka, S.A. Fromm, S. Bernuzzi, L.F. Roberts, Astrophys. J. 869, 130 (2018) arXiv:1809.11161ADSCrossRefGoogle Scholar
  5. 5.
    L.F. Roberts, G. Shen, V. Cirigliano, J.A. Pons, S. Reddy, S.E. Woosley, Phys. Rev. Lett. 108, 061103 (2012) arXiv:1112.0335ADSCrossRefGoogle Scholar
  6. 6.
    J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012) arXiv:1305.3510ADSCrossRefGoogle Scholar
  7. 7.
    F. Ozel, P. Freire, Annu. Rev. Astron. Astrophys. 54, 401 (2016) arXiv:1603.02698ADSCrossRefGoogle Scholar
  8. 8.
    M. Oertel, M. Hempel, T. Klhn, S. Typel, Rev. Mod. Phys. 89, 015007 (2017) arXiv:1610.03361ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Lattimer, F.D. Swesty, Nucl. Phys. A 535, 331 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Nucl. Phys. A 637, 435 (1998) arXiv:nucl-th/9805035ADSCrossRefGoogle Scholar
  11. 11.
    I. Bombaci, D. Logoteta, Astron. Astrophys. 609, A128 (2018) arXiv:1805.11846ADSCrossRefGoogle Scholar
  12. 12.
    T. Damour, Gravitational radiation and the motion of compact bodies, in Gravitational Radiation, edited by N. Deruelle, T. Piran (North-Holland, Amsterdam, 1983) pp. 59--144Google Scholar
  13. 13.
    E.E. Flanagan, T. Hinderer, Phys. Rev. D 77, 021502 (2008) arXiv:0709.1915ADSCrossRefGoogle Scholar
  14. 14.
    T. Hinderer, B.D. Lackey, R.N. Lang, J.S. Read, Phys. Rev. D 81, 123016 (2010) arXiv:0911.3535ADSCrossRefGoogle Scholar
  15. 15.
    T. Damour, A. Nagar, Phys. Rev. D 81, 084016 (2010) arXiv:0911.5041ADSCrossRefGoogle Scholar
  16. 16.
    T. Damour, A. Nagar, L. Villain, Phys. Rev. D 85, 123007 (2012) arXiv:1203.4352ADSCrossRefGoogle Scholar
  17. 17.
    S. Bernuzzi, A. Nagar, M. Thierfelder, B. Brügmann, Phys. Rev. D 86, 044030 (2012) arXiv:1205.3403ADSCrossRefGoogle Scholar
  18. 18.
    S. Bernuzzi, A. Nagar, S. Balmelli, T. Dietrich, M. Ujevic, Phys. Rev. Lett. 112, 201101 (2014) arXiv:1402.6244ADSCrossRefGoogle Scholar
  19. 19.
    F. Zappa, S. Bernuzzi, D. Radice, A. Perego, T. Dietrich, Phys. Rev. Lett. 120, 111101 (2018) arXiv:1712.04267ADSCrossRefGoogle Scholar
  20. 20.
    K. Hotokezaka, K. Kyutoku, H. Okawa, M. Shibata, K. Kiuchi, Phys. Rev. D 83, 124008 (2011) arXiv:1105.4370ADSCrossRefGoogle Scholar
  21. 21.
    A. Bauswein, T. Baumgarte, H.T. Janka, Phys. Rev. Lett. 111, 131101 (2013) arXiv:1307.5191ADSCrossRefGoogle Scholar
  22. 22.
    D. Radice, A. Perego, F. Zappa, S. Bernuzzi, Astrophys. J. 852, L29 (2018) arXiv:1711.03647ADSCrossRefGoogle Scholar
  23. 23.
    D. Radice, A. Perego, S. Bernuzzi, B. Zhang, Mon. Not. R. Astron. Soc. 481, 3670 (2018) arXiv:1803.10865ADSCrossRefGoogle Scholar
  24. 24.
    D. Eichler, M. Livio, T. Piran, D.N. Schramm, Nature 340, 126 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    E. Nakar, Phys. Rep. 442, 166 (2007) arXiv:astro-ph/0701748ADSCrossRefGoogle Scholar
  26. 26.
    S. Rosswog, Int. J. Mod. Phys. D 24, 1530012 (2015) arXiv:1501.02081ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    O. Just, M. Obergaulinger, H.T. Janka, A. Bauswein, N. Schwarz, Astrophys. J. 816, L30 (2016) arXiv:1510.04288ADSCrossRefGoogle Scholar
  28. 28.
    D. Radice, S. Bernuzzi, W. Del Pozzo, L.F. Roberts, C.D. Ott, Astrophys. J. 842, L10 (2017) arXiv:1612.06429ADSCrossRefGoogle Scholar
  29. 29.
    E.R. Most, L.J. Papenfort, V. Dexheimer, M. Hanauske, S. Schramm, H. Stcker, L. Rezzolla, arXiv:1807.03684 (2018)Google Scholar
  30. 30.
    A. Bauswein, N.U.F. Bastian, D.B. Blaschke, K. Chatziioannou, J.A. Clark, T. Fischer, M. Oertel, Phys. Rev. Lett. 122, 061102 (2019) arXiv:1809.01116ADSCrossRefGoogle Scholar
  31. 31.
    Virgo, LIGO Scientific Collaborations (B.P. Abbott et al.), Phys. Rev. Lett. 119, 161101 (2017) arXiv:1710.05832ADSCrossRefGoogle Scholar
  32. 32.
    LIGO Scientific, Virgo Collaborations (B.P. Abbott et al.), Phys. Rev. X 9, 011001 (2019) arXiv:1805.11579Google Scholar
  33. 33.
    LIGO Scientific, Virgo Collaborations (B.P. Abbott et al.), Phys. Rev. Lett. 121, 161101 (2018) arXiv:1805.11581ADSCrossRefGoogle Scholar
  34. 34.
    S. De, D. Finstad, J.M. Lattimer, D.A. Brown, E. Berger, C.M. Biwer, arXiv:1804.08583 (2018)Google Scholar
  35. 35.
    L. Baiotti, T. Damour, B. Giacomazzo, A. Nagar, L. Rezzolla, Phys. Rev. D 84, 024017 (2011) arXiv:1103.3874ADSCrossRefGoogle Scholar
  36. 36.
    D. Radice, L. Rezzolla, F. Galeazzi, Mon. Not. R. Astron. Soc. 437, L46 (2014) arXiv:1306.6052ADSCrossRefGoogle Scholar
  37. 37.
    K. Hotokezaka, K. Kyutoku, H. Okawa, M. Shibata, Phys. Rev. D 91, 064060 (2015) arXiv:1502.03457ADSCrossRefGoogle Scholar
  38. 38.
    A. Nagar et al., Phys. Rev. D 98, 104052 (2018) arXiv:1806.01772ADSCrossRefGoogle Scholar
  39. 39.
    Virgo, LIGO Scientific Collaborations (B.P. Abbott et al.), Astrophys. J. 851, L16 (2017) arXiv:1710.09320ADSCrossRefGoogle Scholar
  40. 40.
    A. Bauswein, H.T. Janka, Phys. Rev. Lett. 108, 011101 (2012) arXiv:1106.1616ADSCrossRefGoogle Scholar
  41. 41.
    K. Takami, L. Rezzolla, L. Baiotti, Phys. Rev. Lett. 113, 091104 (2014) arXiv:1403.5672ADSCrossRefGoogle Scholar
  42. 42.
    S. Bernuzzi, T. Dietrich, A. Nagar, Phys. Rev. Lett. 115, 091101 (2015) arXiv:1504.01764ADSCrossRefGoogle Scholar
  43. 43.
    H. Yang, V. Paschalidis, K. Yagi, L. Lehner, F. Pretorius, N. Yunes, arXiv:1707.00207 (2017)Google Scholar
  44. 44.
    K. Chatziioannou, J.A. Clark, A. Bauswein, M. Millhouse, T.B. Littenberg, N. Cornish, Phys. Rev. D 96, 124035 (2017) arXiv:1711.00040ADSCrossRefGoogle Scholar
  45. 45.
    B. Margalit, B.D. Metzger, Astrophys. J. 850, L19 (2017) arXiv:1710.05938ADSCrossRefGoogle Scholar
  46. 46.
    M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Tanaka, Phys. Rev. D 96, 123012 (2017) arXiv:1710.07579ADSCrossRefGoogle Scholar
  47. 47.
    L. Rezzolla, E.R. Most, L.R. Weih, Astrophys. J. 852, L25 (2018) arXiv:1711.00314ADSCrossRefGoogle Scholar
  48. 48.
    M. Ruiz, S.L. Shapiro, A. Tsokaros, Phys. Rev. D 97, 021501 (2018) arXiv:1711.00473ADSCrossRefGoogle Scholar
  49. 49.
    A. Bauswein, O. Just, H.T. Janka, N. Stergioulas, Astrophys. J. 850, L34 (2017) arXiv:1710.06843ADSCrossRefGoogle Scholar
  50. 50.
    D. Radice, L. Dai, Eur. Phys. J. A 55, 50 (2019) arXiv:1810.12917ADSCrossRefGoogle Scholar
  51. 51.
    S. Typel, G. Ropke, T. Klahn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81, 015803 (2010) arXiv:0908.2344ADSCrossRefGoogle Scholar
  52. 52.
    M. Hempel, J. Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010) arXiv:0911.4073ADSCrossRefGoogle Scholar
  53. 53.
    A.W. Steiner, M. Hempel, T. Fischer, Astrophys. J. 774, 17 (2013) arXiv:1207.2184ADSCrossRefGoogle Scholar
  54. 54.
    K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Astrophys. J. 773, 11 (2013) arXiv:1303.4662ADSCrossRefGoogle Scholar
  55. 55.
    P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010) arXiv:1010.5788ADSCrossRefGoogle Scholar
  56. 56.
    J. Antoniadis, P.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch et al., Science 340, 6131 (2013) arXiv:1304.6875ADSCrossRefGoogle Scholar
  57. 57.
    Eric Gourgoulhon, Philippe Grandclément, Jean-Alain Marck, Jérôme Novak and Keisuke Taniguchi, http://www.lorene.obspm.fr/, Paris Observatory, Meudon section - LUTH laboratory
  58. 58.
    S. Bernuzzi, D. Hilditch, Phys. Rev. D 81, 084003 (2010) arXiv:0912.2920ADSCrossRefGoogle Scholar
  59. 59.
    D. Hilditch, S. Bernuzzi, M. Thierfelder, Z. Cao, W. Tichy, B. Bruegmann, Phys. Rev. D 88, 084057 (2013) arXiv:1212.2901ADSCrossRefGoogle Scholar
  60. 60.
    D. Radice, L. Rezzolla, Astron. Astrophys. 547, A26 (2012) arXiv:1206.6502ADSCrossRefGoogle Scholar
  61. 61.
    D. Radice, L. Rezzolla, F. Galeazzi, Class. Quantum. Grav. 31, 075012 (2014) arXiv:1312.5004ADSCrossRefGoogle Scholar
  62. 62.
    D. Radice, L. Rezzolla, F. Galeazzi, ASP Conf. Ser. 498, 121 (2015) arXiv:1502.00551ADSGoogle Scholar
  63. 63.
    M.J. Berger, J. Oliger, J. Comput. Phys. 53, 484 (1984)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    M.J. Berger, P. Colella, J. Comput. Phys. 82, 64 (1989)ADSCrossRefGoogle Scholar
  65. 65.
    C. Reisswig, R. Haas, C.D. Ott, E. Abdikamalov, P. Mösta, D. Pollney, E. Schnetter, Phys. Rev. D 87, 064023 (2013) arXiv:1212.1191ADSCrossRefGoogle Scholar
  66. 66.
    E. Schnetter, S.H. Hawley, I. Hawke, Class. Quantum. Grav. 21, 1465 (2004) arXiv:gr-qc/0310042ADSCrossRefGoogle Scholar
  67. 67.
    D. Radice, Astrophys. J. 838, L2 (2017) arXiv:1703.02046ADSCrossRefGoogle Scholar
  68. 68.
    N.I. Shakura, R.A. Sunyaev, Astron. Astrophys. 24, 337 (1973)ADSGoogle Scholar
  69. 69.
    K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Shibata, Phys. Rev. D 97, 124039 (2018) arXiv:1710.01311ADSCrossRefGoogle Scholar
  70. 70.
    S. Rosswog, M. Liebendoerfer, Mon. Not. R. Astron. Soc. 342, 673 (2003) arXiv:astro-ph/0302301ADSCrossRefGoogle Scholar
  71. 71.
    N. Itoh, H. Hayashi, A. Nishikawa, Y. Kohyama, Astrophys. J. Suppl. 102, 411 (1996)ADSCrossRefGoogle Scholar
  72. 72.
    F. Galeazzi, W. Kastaun, L. Rezzolla, J.A. Font, Phys. Rev. D 88, 064009 (2013) arXiv:1306.4953ADSCrossRefGoogle Scholar
  73. 73.
    D. Radice, F. Galeazzi, J. Lippuner, L.F. Roberts, C.D. Ott, L. Rezzolla, Mon. Not. R. Astron. Soc. 460, 3255 (2016) arXiv:1601.02426ADSCrossRefGoogle Scholar
  74. 74.
    S.W. Bruenn, Astrophys. J. Suppl. 58, 771 (1985)ADSCrossRefGoogle Scholar
  75. 75.
    M.H. Ruffert, H.T. Janka, G. Schäfer, Astron. Astrophys. 311, 532 (1996) arXiv:astro-ph/9509006ADSGoogle Scholar
  76. 76.
    A. Burrows, S. Reddy, T.A. Thompson, Nucl. Phys. A 777, 356 (2006) arXiv:astro-ph/0404432ADSCrossRefGoogle Scholar
  77. 77.
    S.L. Shapiro, S.A. Teukolsky, Black holes, white dwarfs, and neutron stars: The physics of compact objects (Wiley, New York, USA, 1983)Google Scholar
  78. 78.
    D. Neilsen, S.L. Liebling, M. Anderson, L. Lehner, E. O’Connor et al., Phys. Rev. D 89, 104029 (2014) arXiv:1403.3680ADSCrossRefGoogle Scholar
  79. 79.
    Y. Sekiguchi, K. Kiuchi, K. Kyutoku, M. Shibata, Phys. Rev. D 91, 064059 (2015) arXiv:1502.06660ADSCrossRefGoogle Scholar
  80. 80.
    F. Foucart, E. O’Connor, L. Roberts, M.D. Duez, R. Haas, L.E. Kidder, C.D. Ott, H.P. Pfeiffer, M.A. Scheel, B. Szilagyi, Phys. Rev. D 91, 124021 (2015) arXiv:1502.04146ADSCrossRefGoogle Scholar
  81. 81.
    F. Foucart, M.D. Duez, L.E. Kidder, R. Nguyen, H.P. Pfeiffer, M.A. Scheel, arXiv:1806.02349 (2018)Google Scholar
  82. 82.
    A. Perego, R. Cabezon, R. Kaeppeli, Astrophys. J. Suppl. 223, 22 (2016) arXiv:1511.08519ADSCrossRefGoogle Scholar
  83. 83.
    J. Kaplan, C. Ott, E. O’Connor, K. Kiuchi, L. Roberts et al., Astrophys. J. 790, 19 (2014) arXiv:1306.4034ADSCrossRefGoogle Scholar
  84. 84.
    K. Hotokezaka, K. Kiuchi, K. Kyutoku, H. Okawa, Y.i. Sekiguchi et al., Phys. Rev. D 87, 024001 (2013) arXiv:1212.0905ADSCrossRefGoogle Scholar
  85. 85.
    A. Bauswein, S. Goriely, H.T. Janka, Astrophys. J. 773, 78 (2013) arXiv:1302.6530ADSCrossRefGoogle Scholar
  86. 86.
    N. Stergioulas, A. Bauswein, K. Zagkouris, H.T. Janka, Mon. Not. R. Astron. Soc. 418, 427 (2011) arXiv:1105.0368ADSCrossRefGoogle Scholar
  87. 87.
    S. Bernuzzi, T. Dietrich, W. Tichy, B. Brügmann, Phys. Rev. D 89, 104021 (2014) arXiv:1311.4443ADSCrossRefGoogle Scholar
  88. 88.
    S. Bacca, K. Hally, M. Liebendorfer, A. Perego, C.J. Pethick, A. Schwenk, Astrophys. J. 758, 34 (2012) arXiv:1112.5185ADSCrossRefGoogle Scholar
  89. 89.
    T. Fischer, M. Hempel, I. Sagert, Y. Suwa, J. Schaffner-Bielich, Eur. Phys. J. A 50, 46 (2014) arXiv:1307.6190ADSCrossRefGoogle Scholar
  90. 90.
    S. Lalit, M.A.A. Mamun, C. Constantinou, M. Prakash, Eur. Phys. J. A 55, 10 (2019) arXiv:1809.08126ADSCrossRefGoogle Scholar
  91. 91.
    A. Perego, S. Rosswog, R. Cabezon, O. Korobkin, R. Kaeppeli et al., Mon. Not. R. Astron. Soc. 443, 3134 (2014) arXiv:1405.6730ADSCrossRefGoogle Scholar
  92. 92.
    W. Kastaun, R. Ciolfi, A. Endrizzi, B. Giacomazzo, Phys. Rev. D 96, 043019 (2017) arXiv:1612.03671ADSCrossRefGoogle Scholar
  93. 93.
    M. Hanauske, K. Takami, L. Bovard, L. Rezzolla, J.A. Font, F. Galeazzi, H. Stcker, Phys. Rev. D 96, 043004 (2017) arXiv:1611.07152ADSCrossRefGoogle Scholar
  94. 94.
    J.P. Cox, R.T. Giuli, Principles of stellar structure (Gordon and Breach, New York, 1968)Google Scholar
  95. 95.
    K. Takahashi, M.F. El Eid, W. Hillebrandt, Astron. Astrophys. 67, 185 (1978)ADSGoogle Scholar
  96. 96.
    S. Banik, M. Hempel, D. Bandyopadhyay, Astrophys. J. Suppl. 214, 22 (2014) arXiv:1404.6173ADSCrossRefGoogle Scholar
  97. 97.
    N.K. Glendenning, Compact Stars (Springer-Verlag, New York, 1996)Google Scholar
  98. 98.
    B.D. Metzger, R. Fernndez, Mon. Not. R. Astron. Soc. 441, 3444 (2014) arXiv:1402.4803ADSCrossRefGoogle Scholar
  99. 99.
    O. Just, A. Bauswein, R.A. Pulpillo, S. Goriely, H.T. Janka, Mon. Not. R. Astron. Soc. 448, 541 (2015) arXiv:1406.2687ADSCrossRefGoogle Scholar
  100. 100.
    F. Foucart, E. O’Connor, L. Roberts, L.E. Kidder, H.P. Pfeiffer, M.A. Scheel, Phys. Rev. D 94, 123016 (2016) arXiv:1607.07450ADSCrossRefGoogle Scholar
  101. 101.
    J. Lippuner, R. Fernndez, L.F. Roberts, F. Foucart, D. Kasen, B.D. Metzger, C.D. Ott, Mon. Not. R. Astron. Soc. 472, 904 (2017) arXiv:1703.06216ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Albino Perego
    • 1
    • 2
    Email author
  • Sebastiano Bernuzzi
    • 3
  • David Radice
    • 4
    • 5
  1. 1.Department of PhysicsTrento UniversityTrentoItaly
  2. 2.Istituto Nazionale di Fisica Nucleare, Sezione di Milano-BicoccaMilanoItaly
  3. 3.Theoretisch-Physikalisches InstitutFriedrich-Schiller-Universität JenaJenaGermany
  4. 4.Institute for Advanced StudyPrincetonUSA
  5. 5.Department of Astrophysical SciencesPrinceton UniversityPrincetonUSA

Personalised recommendations