Advertisement

Radiopurity of an archaeological Roman lead cryogenic detector

  • L. PattavinaEmail author
  • J. W. Beeman
  • M. Clemenza
  • O. Cremonesi
  • E. Fiorini
  • L. Pagnanini
  • S. Pirro
  • C. Rusconi
  • K. Schäffner
Special Article - New Tools and Techniques
  • 11 Downloads

Abstract.

Archaeological Roman lead (Pb) is known to be a suitable material for shielding experimental apparata in rare event searches. In the past years the intrinsic radiopurity of this material was investigated using different technologies. In this work we applied the latest advancements in cryogenic techniques to study the bulk radiopurity of a 1cm^3 sample of archaeological Roman Pb. We report the lowest ever measured limit on 210Pb content in Roman Pb, with a concentration lower than 715μBq/kg. Furthermore, we also studied 238U and 232Th impurity concentrations. Our values concur with independent measurements reported in literature.

References

  1. 1.
    J. Engel, P. Vogel, Physics 11, 30 (2018)CrossRefGoogle Scholar
  2. 2.
    G. Bertone et al., J. Cosmol. Astropart. Phys. 03, 026 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    J.B. Dent et al., Phys. Rev. D 97, 035009 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    Borexino Collaboration (G. Alimonti et al.), Nucl. Instrum. Methods A 600, 568 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    GERDA Collaboration (M. Agostini et al.), Eur. Phys. J. C 78, 388 (2018)CrossRefGoogle Scholar
  6. 6.
    Dark Side Collaboration (P. Agnes et al.), Phys. Rev. Lett. 121, 081307 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    CUORE Collaboration (C. Alduino et al.), Phys. Rev. Lett. 120, 132501 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    O. Azzolini et al., Phys. Rev. Lett. 120, 232502 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    CRESST Collaboration (G. Angloher et al.), Eur. Phys. J. C 76, 25 (2016)CrossRefGoogle Scholar
  10. 10.
    OPERA Collaboration (N. Agafonova et al.), J. Instrum. 4, P06020 (2009)Google Scholar
  11. 11.
    C.A. Duba et al., J. Phys.: Conf. Ser. 136, 042077 (2008)Google Scholar
  12. 12.
    M. Balata et al., Nucl. Instrum. Methods A 370, 605 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Atomic and Nuclear data base: http://www.lnhb.fr/nuclear-data
  14. 14.
    R.B. Firestone, Table of Isotopes, 8th edition (Wiley-VCH Berlin, 1998)Google Scholar
  15. 15.
    A. Shor et al., Phys. Rev. C 97, 034303 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    CUORE Collaboration (C. Alduino et al.), Eur. Phys. J. C 77, 543 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Laubenstein et al., Appl. Radiat. Isot. 61, 167 (2004)CrossRefGoogle Scholar
  18. 18.
    K. Bunzl, W. Kracke, Nucl. Instrum. Methods A 238, 191 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    F. Callatay, J. Roman Archaeol. 18, 361 (2005)CrossRefGoogle Scholar
  20. 20.
    A. Alessandrello et al., Nucl. Instrum. Methods B 142, 163 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    M. Clemenza, J. Radioanal. Nucl. Chem. 318, 1765 (2018)CrossRefGoogle Scholar
  22. 22.
    A. Alessandrello et al., Nucl. Instrum. Methods B 61, 106 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    G. Heusser, Low-level germanium gamma-ray spectrometry at the $\mu$Bq/kg level and future developments towards higher sensitivity, in Radionuclides in the Environment, edited by P.P. Povinec, J.A. Sanchez-Cabeza (Elsevier, Amsterdam, 2006) p. 495Google Scholar
  24. 24.
    J.L. Orrell et al., J. Radioanal. Nucl. Chem. 309, 1271 (2016)CrossRefGoogle Scholar
  25. 25.
    A. Alessandrello et al., Nucl. Instrum. Methods B 83, 539 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    J.W. Beeman et al., Eur. Phys. J. A 49, 50 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    S. Nagorny et al., J. Phys.: Conf. Ser. 84, 012025 (2017)Google Scholar
  28. 28.
    O. Azzolini et al., Eur. Phys. J. C 78, 428 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    M. Clemenza et al., Eur. Phys. J. C 71, 1805 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    C. Arnaboldi et al., Nucl. Instrum. Methods A 520, 578 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    G. Feldman, R. Cousins, Phys. Rev. D 57, 3873 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    A. Bandyopadhyay et al., Phys. Rev. D 95, 065022 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • L. Pattavina
    • 1
    • 2
    Email author
  • J. W. Beeman
    • 3
  • M. Clemenza
    • 4
    • 5
  • O. Cremonesi
    • 4
  • E. Fiorini
    • 4
    • 5
  • L. Pagnanini
    • 4
    • 5
  • S. Pirro
    • 6
  • C. Rusconi
    • 6
    • 7
  • K. Schäffner
    • 1
    • 6
  1. 1.Gran Sasso Science InstituteL’AquilaItaly
  2. 2.Physik DepartmentTechnische Universität MünchenGarchingGermany
  3. 3.Lawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.INFN - Sezione di Milano - BicoccaMilanoItaly
  5. 5.Dipartimento di FisicaUniversità di Milano - BicoccaMilanoItaly
  6. 6.INFN - Laboratori Nazionali del Gran SassoAssergi (L’Aquila)Italy
  7. 7.Department of Physics and AstronomyUniversity of South CarolinaColumbiaUSA

Personalised recommendations