Advertisement

Nucleon structure functions from the NJL-model chiral soliton

  • I. Takyi
  • H. WeigelEmail author
Regular Article - Theoretical Physics
  • 15 Downloads

Abstract.

We present numerical simulations for unpolarized and polarized structure functions in a chiral soliton model. The soliton is constructed self-consistently from quark fields from which the structure functions are extracted. Central to the project is regularizing the Dirac sea (or vacuum) contribution to structure functions directly from the regularized action functional that defines the model. In turn, the structure functions are obtained from matrix elements of symmetry currents without assumptions on the nature of quark bilocal and bilinear operators. We discuss in detail how sum rules are realized at the level of the quark wave-functions in momentum space. The comparison with experimental data is convincing for the polarized structure functions but exhibits some discrepancies in the unpolarized case. The vacuum contribution to the polarized structure functions is particularly small.

References

  1. 1.
    T. Muta, Foundations of Quantum Chromodynamics (World Scientific, Singapore, 1987)Google Scholar
  2. 2.
    R.G. Roberts, The Structure of the Proton, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 1990)Google Scholar
  3. 3.
    F.J. Ynduráin, The Theory of Quark and Gluon Interactions (Springer-Verlag, Berlin, Heidelberg, New York, 1993)Google Scholar
  4. 4.
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, JHEP 07, 012 (2002) arXiv:hep-ph/0201195ADSCrossRefGoogle Scholar
  5. 5.
    J.J.J. Kokkedee, The Quark Model (Benjamin, New York, 1979)Google Scholar
  6. 6.
    A.W. Thomas, Adv. Nucl. Phys. 13, 1 (1984)Google Scholar
  7. 7.
    P. Maris, C.D. Roberts, Int. J. Mod. Phys. E 12, 297 (2003) arXiv:nucl-th/0301049ADSCrossRefGoogle Scholar
  8. 8.
    H. Weigel, Lect. Notes Phys. 743, 1 (2008)CrossRefGoogle Scholar
  9. 9.
    R. Alkofer, H. Reinhardt, H. Weigel, Phys. Rep. 265, 139 (1996) arXiv:hep-ph/9501213ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    C. Christov, A. Blotz, H.-C. Kim, P. Pobylitsa, T. Watabe, T. Meissner et al., Prog. Part. Nucl. Phys. 37, 91 (1996) arXiv:hep-ph/9604441ADSCrossRefGoogle Scholar
  11. 11.
    H. Weigel, L.P. Gamberg, H. Reinhardt, Phys. Lett. B 399, 287 (1997) arXiv:hep-ph/9604295ADSCrossRefGoogle Scholar
  12. 12.
    H. Weigel, L.P. Gamberg, H. Reinhardt, Phys. Rev. D 55, 6910 (1997) arXiv:hep-ph/9609226ADSCrossRefGoogle Scholar
  13. 13.
    D. Diakonov, V. Petrov, P. Pobylitsa, M.V. Polyakov, C. Weiss, Nucl. Phys. B 480, 341 (1996) arXiv:hep-ph/9606314ADSCrossRefGoogle Scholar
  14. 14.
    D. Diakonov, V.Yu. Petrov, P.V. Pobylitsa, M.V. Polyakov, C. Weiss, Phys. Rev. D 56, 4069 (1997) arXiv:hep-ph/9703420ADSCrossRefGoogle Scholar
  15. 15.
    P.V. Pobylitsa, M.V. Polyakov, K. Goeke, T. Watabe, C. Weiss, Phys. Rev. D 59, 034024 (1999) arXiv:hep-ph/9804436ADSCrossRefGoogle Scholar
  16. 16.
    M. Wakamatsu, T. Kubota, Phys. Rev. D 57, 5755 (1998) arXiv:hep-ph/9707500ADSCrossRefGoogle Scholar
  17. 17.
    M. Wakamatsu, T. Kubota, Phys. Rev. D 60, 034020 (1999) arXiv:hep-ph/9809443ADSCrossRefGoogle Scholar
  18. 18.
    M. Wakamatsu, Phys. Rev. D 67, 034005 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    M. Wakamatsu, Phys. Rev. D 67, 034006 (2003) arXiv:hep-ph/0212356ADSCrossRefGoogle Scholar
  20. 20.
    H. Weigel, E. Ruiz Arriola, L.P. Gamberg, Nucl. Phys. B 560, 383 (1999) arXiv:hep-ph/9905329ADSCrossRefGoogle Scholar
  21. 21.
    I. Takyi, H. Weigel, arXiv:1903.10748 (2019)Google Scholar
  22. 22.
    T. Frederico, G.A. Miller, Phys. Rev. D 50, 210 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    R.M. Davidson, E. Ruiz Arriola, Phys. Lett. B 348, 163 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    H. Reinhardt, Nucl. Phys. A 503, 825 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    G.S. Adkins, C.R. Nappi, E. Witten, Nucl. Phys. B 228, 552 (1983)ADSCrossRefGoogle Scholar
  26. 26.
    I. Takyi, Structure Functions of the Nucleon in a Soliton Model, PhD Thesis, Stellenbosch University (2019) electronic version available at http://scholar.sun.ac.za/bitstream/handle/10019.1/106075/takyi_nucleon_2019.pdf
  27. 27.
    S. Kahana, G. Ripka, Nucl. Phys. A 429, 462 (1984)ADSCrossRefGoogle Scholar
  28. 28.
    J.D. Bjorken, Phys. Rev. D 1, 1376 (1970)ADSCrossRefGoogle Scholar
  29. 29.
    S.L. Adler, Phys. Rev. 143, 1144 (1966)ADSCrossRefGoogle Scholar
  30. 30.
    H. Weigel, L.P. Gamberg, H. Reinhardt, Mod. Phys. Lett. A 11, 3021 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    L.P. Gamberg, H. Reinhardt, H. Weigel, Int. J. Mod. Phys. A 13, 5519 (1998) arXiv:hep-ph/9707352ADSCrossRefGoogle Scholar
  32. 32.
    New Muon Collaboration, Phys. Rev. D 50, R1 (1994)Google Scholar
  33. 33.
    M. Wakamatsu, T. Watabe, Phys. Lett. B 312, 184 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    C.V. Christov, A. Blotz, K. Goeke, P. Pobylitsa, V. Petrov, M. Wakamatsu et al., Phys. Lett. B 325, 467 (1994) arXiv:hep-ph/9312279ADSCrossRefGoogle Scholar
  35. 35.
    R. Alkofer, H. Weigel, Phys. Lett. B 319, 1 (1993) arXiv:hep-ph/9308327ADSCrossRefGoogle Scholar
  36. 36.
    M. Wakamatsu, Prog. Theor. Phys. 95, 143 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    Particle Data Group Collaboration, Phys. Rev. D 54, 1 (1996)Google Scholar
  38. 38.
    COMPASS Collaboration, Phys. Lett. B 647, 8 (2007) arXiv:hep-ex/0609038ADSCrossRefGoogle Scholar
  39. 39.
    C.A. Aidala, S.D. Bass, D. Hasch, G.K. Mallot, Rev. Mod. Phys. 85, 655 (2013) arXiv:1209.2803ADSCrossRefGoogle Scholar
  40. 40.
    R.L. Jaffe, Phys. Rev. D 11, 1953 (1975)ADSCrossRefGoogle Scholar
  41. 41.
    R.L. Jaffe, Ann. Phys. 132, 32 (1981)ADSCrossRefGoogle Scholar
  42. 42.
    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)Google Scholar
  43. 43.
    G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)ADSCrossRefGoogle Scholar
  44. 44.
    Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)ADSGoogle Scholar
  45. 45.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, 1995)Google Scholar
  46. 46.
    H. Weigel, Nucl. Phys. A 670, 92 (2000) arXiv:hep-ph/9902390ADSCrossRefGoogle Scholar
  47. 47.
    E143 Collaboration, Phys. Rev. Lett. 74, 346 (1995)CrossRefGoogle Scholar
  48. 48.
    E143 Collaboration, Phys. Rev. D 58, 112003 (1998) arXiv:hep-ph/9802357CrossRefGoogle Scholar
  49. 49.
    Jefferson Lab Hall A Collaboration, Phys. Rev. D 94, 052003 (2016) arXiv:1603.03612ADSCrossRefGoogle Scholar
  50. 50.
    E143 Collaboration, Phys. Rev. Lett. 76, 587 (1996) arXiv:hep-ex/9511013CrossRefGoogle Scholar
  51. 51.
    L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983)ADSCrossRefGoogle Scholar
  52. 52.
    I.R. Kenyon, Rep. Prog. Phys. 45, 1261 (1982)ADSCrossRefGoogle Scholar
  53. 53.
    R.L. Jaffe, X.-D. Ji, Phys. Rev. Lett. 67, 552 (1991)ADSCrossRefGoogle Scholar
  54. 54.
    R.L. Jaffe, X.-D. Ji, Nucl. Phys. B 375, 527 (1992)ADSCrossRefGoogle Scholar
  55. 55.
    X. Ji, Phys. Rev. Lett. 110, 262002 (2013) arXiv:1305.1539ADSCrossRefGoogle Scholar
  56. 56.
    C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, F. Steffens et al., Phys. Rev. D 96, 014513 (2017) arXiv:1610.03689ADSCrossRefGoogle Scholar
  57. 57.
    W. Broniowski, E. Ruiz Arriola, Phys. Lett. B 773, 385 (2017) arXiv:1707.09588ADSCrossRefGoogle Scholar
  58. 58.
    L. Gamberg, Z.B. Kang, I. Vitev, H. Xing, Phys. Lett. 743, 112 (2015) arXiv:1412.3401CrossRefGoogle Scholar
  59. 59.
    G. Altarelli, P. Nason, G. Ridolfi, Phys. Lett. B 320, 152 (1994) arXiv:hep-ph/9311255ADSCrossRefGoogle Scholar
  60. 60.
    R.L. Jaffe, Comments Nucl. Part. Phys. 19, 239 (1990)Google Scholar
  61. 61.
    X.-D. Ji, C.-h. Chou, Phys. Rev. D 42, 3637 (1990)ADSCrossRefGoogle Scholar
  62. 62.
    R.L. Jaffe, X.-D. Ji, Phys. Rev. D 43, 724 (1991)ADSCrossRefGoogle Scholar
  63. 63.
    S. Wandzura, F. Wilczek, Phys. Lett. B 72, 195 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Theoretical Physics, Physics DepartmentStellenbosch UniversityMatielandSouth Africa

Personalised recommendations