Advertisement

Study of the surface energy coefficient used in nuclear proximity potential of the \( \alpha\)-nuclei systems from density-dependent nucleon-nucleon interactions

  • R. GharaeiEmail author
  • S. Mohammadi
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract.

An attempt has been made to study systematically the nuclear surface tension coefficient, \( \gamma\) , of the proximity formalism by using the microscopic double-folding (DF) model with the realistic density-dependent (DD) nucleon-nucleon interaction for the ground-state-to-ground-state \( \alpha\) -decays of 235 parent nuclei with \( Z=61\mbox{--}99\) . In the calculations of DF model, the nucleon-nucleon (NN) interactions are formulated using the effective M3Y force of the CDM3Y6 based on the G -matrix elements of the Paris interaction. We present a new dependence of the surface energy coefficient \( \gamma\) on the asymmetry parameter \( A_s\) of the \( \alpha\) -nuclei systems by fitting all of the calculated values. Using the presently obtained formula of the coefficient \( \gamma\) in the proximity potential we calculate the theoretical values of the alpha-decay half-lives for different nuclei in the framework of the Wentzel-Kramers-Brillouin (WKB) approximation. Results of our calculations are compared to the values of the experimental data and proximity potential 1977. Good agreements are found. The quality of the proximity potential accompanied by the analytical formula of the surface energy coefficient is tested for fusion reactions between \( \alpha\) -particles and heavy nuclei 40 Ca, 48 Ti, 51V , 59Co , 63Cu , 93Nb , 154Sm and 162Dy The evaluated \( \alpha\) -capture cross sections agreed well with the corresponding experimental data. In the present study, the role of the proton and neutron magic numbers of daughter nuclei and also the Geiger-Nuttall plots of \( \log_{10} (T_{1/2})\)versus\( Q_{\alpha}^{-1/2}\) for various isotopes of heavy parent nuclei have been studied.

References

  1. 1.
    D.S. Delion, S. Peltonen, J. Suhonen, Phys. Rev. C 73, 014315 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    P.R. Chowdhury, C. Samanta, D.N. Basu, Phys. Rev. C 73, 014612 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    W.M. Seif, Phys. Rev. C 74, 034302 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    D.N. Basu, J. Phys. G: Nucl. Part. Phys. 30, B35 (2004)CrossRefGoogle Scholar
  5. 5.
    S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Yu.Ts. Oganessian et al., Nature (London) 400, 242 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    E. Rutherford, Philos. Mag. 47, 109 (1899)CrossRefGoogle Scholar
  8. 8.
    E. Rutherford, H. Geiger, Proc. R. Soc. London Ser. A 81, 141 (1908)ADSCrossRefGoogle Scholar
  9. 9.
    E. Rutherford, T. Royds, Philos. Mag. 17, 281 (1908)CrossRefGoogle Scholar
  10. 10.
    Yu.Ts. Oganessian et al., Phys. Rev. C 69, 021601(R) (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Yu.Ts. Oganessian et al., Phys. Rev. C 69, 054607 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Yu.Ts. Oganessian et al., Phys. Rev. C 70, 064609 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Yu.Ts. Oganessian et al., Phys. Rev. C 71, 029902(E) (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Yu.Ts. Oganessian et al., Phys. Rev. C 72, 034611 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Yu.Ts. Oganessian et al., Phys. Rev. C 74, 044602 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    S. Hofmann et al., Eur. Phys. J. A 32, 251 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Yu.Ts. Oganessian et al., Phys. Rev. C 76, 011601(R) (2007)ADSCrossRefGoogle Scholar
  18. 18.
    K. Morita et al., J. Phys. Soc. Jpn. 76, 045001 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    J.C. Pei, F.R. Xu, Z.J. Lin, E.G. Zhao, Phys. Rev. C 76, 044326 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    A.N. Andreyev et al., Eur. Phys. J. A 6, 381 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    G.Z. Gamow, Phys. 51, 204 (1928)CrossRefGoogle Scholar
  22. 22.
    E.U. Condon, R.W. Guerney, Nature 122, 439 (1928)ADSCrossRefGoogle Scholar
  23. 23.
    E.U. Condon, R.W. Guerney, Phys. Rev. 33, 127 (1929)ADSCrossRefGoogle Scholar
  24. 24.
    H.F. Zhang, W. Zuo, J.Q. Li, G. Royer, Phys. Rev. C 74, 017304 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    H.F. Zhang, G. Royer, Phys. Rev. C 76, 047304 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    P.R. Chowdhury, D.N. Basu, C. Samanta, Phys. Rev. C 75, 047306 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. (N.Y.) 105, 427 (1977)ADSCrossRefGoogle Scholar
  28. 28.
    I. Dutt, R.K. Puri, Phys. Rev. C 81, 044615 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    I. Dutt, R.K. Puri, Phys. Rev. C 81, 064609 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    I. Dutt, R.K. Puri, Phys. Rev. C 81, 047601 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    O.N. Ghodsi, A. Daei-Ataollah, Phys. Rev. C 93, 024612 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    K.P. Santhosha, Indu Sukumaran, Eur. Phys. J. A 53, 246 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    G.L. Zhang, H.B. Zheng, W.W. Qu, Eur. Phys. J. A 49, 10 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    A.B. Balantekin, N. Takigawa, Rev. Mod. Phys. 70, 77 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972)ADSCrossRefGoogle Scholar
  36. 36.
    G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979)ADSCrossRefGoogle Scholar
  37. 37.
    D.T. Khoa, G.R. Satchler, Nucl. Phys. A 668, 3 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)CrossRefGoogle Scholar
  39. 39.
    W.D. Myers, W.J. Swiatecki, Ark. Fys. 36, 343 (1967)Google Scholar
  40. 40.
    W.M. Seif, H. Mansour, Int. J. Mod. Phys. E 24, 1550083 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    D.T. Khoa, G.R. Satchler, W. von Oertzen, Phys. Rev. C 56, 954 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    D.N. Poenaru, W. Greiner, M. Ivascu, D. Mazilu, I.H. Plonski, Z. Phys. A 325, 435 (1986)ADSGoogle Scholar
  43. 43.
    G.L. Zhang, X.Y. Le, H.Q. Zhang, Nucl. Phys. A 823, 16 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    M. Ismail, A. Adel, Phys. Rev. C 86, 014616 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    H.F. Zhang, G. Royer, Y.J. Wang, J.M. Dong, W. Zuo, J.Q. Li, Phys. Rev. C 80, 057301 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    C. Xu, Z. Ren, Nucl. Phys. A 760, 303 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    N.S. Rajeswari, M. Balasubramaniam, J. Phys. G: Nucl. Part. Phys. 40, 035104 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    V. Zanganeh, N. Wang, Nucl. Phys. A 929, 94 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    M. Golshanian, O.N. Ghodsi, R. Gharaei, Mod. Phys. Lett. A 28, 1350164 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    R. Gharaei, V. Zanganeh, Nucl. Phys. A 952, 28 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    R. Gharaei, A. Hadikhani, Eur. Phys. J. A 53, 147 (2017)ADSCrossRefGoogle Scholar
  52. 52.
    O.N. Ghodsi, R. Gharaei, Phys. Rev. C 88, 054617 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    N.S. Rajeswari, C. Nivetha, M. Balasubramaniam, Eur. Phys. J. A 54, 156 (2018)ADSCrossRefGoogle Scholar
  54. 54.
    P. Moller, A.J. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109, 1 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    C.L. Guo, G.L. Zhang, X.Y. Le, Nucl. Phys. A 897, 54 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    P. Moller, J.R. Nix, Nucl. Phys. A 272, 502 (1976)ADSCrossRefGoogle Scholar
  57. 57.
    H. Geiger, J.M. Nuttall, Philos. Mag. 22, 613 (1911)CrossRefGoogle Scholar
  58. 58.
    V.Yu. Denisov, H. Ikezoe, Phys. Rev. C 72, 064613 (2005)ADSCrossRefGoogle Scholar
  59. 59.
    A. Bhagwat, Y.K. Gambhir, J. Phys. G: Nucl. Part. Phys. 35, 065109 (2008)ADSCrossRefGoogle Scholar
  60. 60.
    V.Yu. Denisov, A.A. Khudenko, At. Data Nucl. Data Tables 95, 815 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    L.C. Vaz, J.M. Alexander, Z. Phys. A 318, 231 (1984)ADSCrossRefGoogle Scholar
  62. 62.
    H. Vonach, R.C. Haight, G. Winkler, Phys. Rev. C 28, 2278 (1983)ADSCrossRefGoogle Scholar
  63. 63.
    S. Gil, R. Vandenbosch, A.J. Lazzarini, D.K. Lock, A. Ray, Phys. Rev. C 31, 1752 (1985)ADSCrossRefGoogle Scholar
  64. 64.
    A. Navin, V. Tripathi, Y. Blumenfeld et al., Phys. Rev. C 70, 44601 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    C.S. Palshetkar, S. Santra, A Chatterjee, K. Ramachandran, Shital Thakur, S.K. Pandit, K. Mahata, A. Shrivastava, V.V. Parkar, V. Nanal, Phys. Rev. C 82, 044608 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    J.M. D’Auria, M.J. Fluss, L. Kowalski, J.M. Miller, Phys. Rev. 168, 1224 (1968)ADSCrossRefGoogle Scholar
  67. 67.
    K.A. Eberhard, Ch. Appel, R. Bangert et al., Phys. Rev. Lett. 43, 107 (1979)ADSCrossRefGoogle Scholar
  68. 68.
    R. Broda, M. Ishihara, B. Herskind et al., Nucl. Phys. A 248, 356 (1975)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Sciences FacultyHakim Sabzevari UniversitySabzevarIran

Personalised recommendations